Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan

Author:

Kumila Ais,Sholihah Baqiyatus,Evizia Evizia,Safitri Nur,Fitri Safama

Abstract

Abstrak: Penelitian ini bertujuan untuk memprediksi metode terbaik pada sistem peramalan dengan menggunakan metode Moving Average (SMA, WMA, dan EMA) dan metode Naive. Pada tahap simulasi, kami menggunakan data jumlah kemiskinan penduduk Provinsi Nusa Tenggara Barat (NTB) tahun 2002-2018 untuk memprediksi data tahun 2019. Adapun, model dievaluasi untuk melihat tingkat akurasi masing-masing metode berdasarkan nilai MAD, MSE, RMSE dan MAPE. Berdasarkan hasil simulasi data dari metode-metode yang diuji, diketahui bahwa metode Naive paling akurat dengan hasil prediksi tahun 2019 sebesar 737.460 dengan MAD, MSE, RMSE dan MAPE berturut-turut sebesar 41.427,188; 2.711.468.146; 52.071,760; dan 0.043. Abstract: This study aims to predict the best method on the forecasting system using the Moving Average method (SMA, WMA, and EMA) and the Naive method. In the simulation phase, we used data on the Number of Poverty of the Population of West Nusa Tenggara (NTB) in 2002-2018 to predict the Poverty of Population of the Province of West Nusa Tenggara (NTB) in 2019. Meanwhile, the model was evaluated to see the accuracy of each method based on the value MAD, MSE, RMSE and MAPE. Based on the simulation results of the data from the methods tested, it can be seen that the Naive method is most accurate with the results of the 2019 prediction of 737,460 with MAD, MSE, RMSE and MAPE in the amount of 41.427,188; 2.711.468.146; 52.071,760; and 0.043.

Publisher

Universitas Muhammadiyah Mataram

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3