Performance of LAD-LASSO and WLAD-LASSO on High Dimensional Regression in Handling Data Containing Outliers

Author:

Cahya Septa Dwi,Sartono Bagus,Indahwati Indahwati,Purnaningrum Evita

Abstract

In several research areas, it is common to have a dataset with more explanatory variables than the number of observations, called high-dimensional data. This condition can lead to multicollinearity problem. The least absolute shrinkage and selection operator (LASSO) solves the problem by shrinking the estimated coefficient to zero so that it can simultaneously carry on the variable selection and the parameter estimation.  But LASSO performs poorly when the data contains some outliers in the response or explanatory variables. Robust methods have addressed this problem based on the least-absolute-deviation approach, such as LAD-LASSO and WLAD-LASSO. This current research aims to evaluate the performance of the LAD-LASSO and WLAD-LASSO methods on high-dimensional and low-dimensional data containing outliers. To evaluate the performance of these methods, the simulation study was conducted. The simulation study used three scenarios (without outliers, outliers on the response variable (5%, 10%, 15%), outliers both on the response and explanatory variables (5%, 10%, 15%)). We also used the Minimum Regularized Covariance Determinant (MRCD) estimator in calculating the weights on the WLAD-LASSO. The best method from this simulation then will be applied to sembung leaf extract data to identify antioxidant marker compounds in sembung leaf extract. The simulation results show that LAD-LASSO tends to be very tight in selecting, while LASSO tends to be too loose.  Meanwhile, WLAD-LASSO is in the middle of those two techniques and performs the best in identifying the important variables correctly. Even the existence of weights cause WLAD-LASSO more robust against the presence of outliers in the response and explanatory variables compared to LAD-LASSO. Furthermore, performance of these methods on high-dimensional data decrease compared to low-dimensional data. The performance of these methods also tends to decrease when the rate of outlier increases. The WLAD-LASSO was then implemented in actual data to find the compound of antioxidant markers in the sembung leaf extract. The compounds/formulas obtained are Umbelliferone, 12-Hydroxyjasmonic Acid, C22H14N8O2, and Acetyleugenol (with a prediction error is 0.133050). These compounds/formulas can be developed as natural antioxidants and have the potential to be developed as medicinal ingredients.

Publisher

Universitas Muhammadiyah Mataram

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weighted bootstrap probability: robust least angle regression method to selection variables in linear regression with high dimensional and outliers;International Conference on Mathematical and Statistical Physics, Computational Science, Education and Communication (ICMSCE 2023);2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3