Synthesis of Carbonaceous Quantum Dots

Author:

Kumar Munish1

Affiliation:

1. Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh , India

Abstract

New class of nanocarbon materials, such as luminescent carbon quantum dots (CQDs) has gained a great deal of interest in the area of electrocatalysis, solar cells, bioimaging nanomedicine, a chemical sensor and a light-emitting diode. CQDs exhibit good physio-chemical properties, such as photoluminescence, high crystallization and good dispersibility. The rapid electron transfer, small size and superconductivity of CQDs provide the CQDs-based composite offering enhanced catalytic activity and electric conductivity. However, additional active moieties are present on the surface, which might aid in the formation of multi-component electrically activated catalysts. Additionally, the multi-component catalysts' internal interactions promote charge transfer and catalytic efficiency, both of which are essential for electrochemistry. Therefore, keeping in mind the importance of CQDs, they are synthesized on the basis of two approaches: Top-down and Bottom-up. The bulk material is reduced in size by utilizing chemical and physical processes in the top-down approach. On the contrary, in the bottom-up method, the atoms are assembled and converted into CQDs using polymerization and carbonization through a chemical reaction. Hence, in this chapter, we will discuss the synthesis techniques for CQDs, such as hydrothermal/solvothermal method, laser ablation, arc-discharge method, acidic oxidation, thermal/combustion routes, electrochemical method and microwave pyrolysis method.

Publisher

BENTHAM SCIENCE PUBLISHERS

Reference57 articles.

1. Rao R.; Pint C.L.; Islam A.E.; Weatherup R.S.; Hofmann S.; Meshot E.R.; Wu F.; Zhou C.; Dee N.; Amama P.B.; Carpena-Nuñez J.; Shi W.; Plata D.L.; Penev E.S.; Yakobson B.I.; Balbuena P.B.; Bichara C.; Futaba D.N.; Noda S.; Shin H.; Kim K.S.; Simard B.; Mirri F.; Pasquali M.; Fornasiero F.; Kauppinen E.I.; Arnold M.; Cola B.A.; Nikolaev P.; Arepalli S.; Cheng H.M.; Zakharov D.N.; Stach E.A.; Zhang J.; Wei F.; Terrones M.; Geohegan D.B.; Maruyama B.; Maruyama S.; Li Y.; Adams W.W.; Hart A.J.; Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 2018,12(12),11756-11784

2. Lin H.S.; Jeon I.; Xiang R.; Seo S.; Lee J.W.; Li C.; Pal A.; Manzhos S.; Goorsky M.S.; Yang Y.; Maruyama S.; Matsuo Y.; Achieving high efficiency in solution-processed perovskite solar cells using C/C mixed fullerenes. ACS Appl Mater Interfaces 2018,10(46),39590-39598

3. Clancy A.J.; Bayazit M.K.; Hodge S.A.; Skipper N.T.; Howard C.A.; Shaffer M.S.P.; Charged carbon nanomaterials: Redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem Rev 2018,118(16),7363-7408

4. Georgakilas V.; Perman J.A.; Tucek J.; Zboril R.; Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 2015,115(11),4744-4822

5. Semeniuk M.; Yi Z.; Poursorkhabi V.; Tjong J.; Jaffer S.; Lu Z.H.; Sain M.; Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 2019,13(6),6224-6255

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3