Modified Graphene-Based Compound: Hydrogen Production through Water Splitting

Author:

Chouhan Neelu1,Marumoto Kazuhiro2

Affiliation:

1. University of Kota,Department of Pure and Applied Chemistry,Kota,India,324005,

2. University of Tsukuba,Division of Materials Science, Faculty of Pure and Applied Sciences,Ibaraki,India,305,

Abstract

Solar hydrogen production from water splitting can solve two big issues i.e. energy and environmental pollution. Since the discovery of graphene, its importance has been proven in many fields including light-driven hydrogen generation from water. This chapter offers a contemporary overview of the progress of graphene-based materials including graphene oxide, reduced graphene oxide and graphene oxide quantum dots for hydrogen evolution from photocatalytic water splitting. This chapter begins with a concise introduction to the current status of hydrogen energy generation from water. The chemical and physical characteristics of this extraordinary plasmonic metamaterial were also elaborated. Afterwards, the synthesis methods, various models, and associated properties of the tailored graphene oxides, reduced graphene oxide and graphene oxide quantum dots in the forms of pristine, binary and ternary compounds are discussed for their application in hydrogen production. In these modified compounds, the graphene acts as a surfactant, a charge-carrier recombination suppressor, an electron-sink and transporter, a co-catalyst, a photocatalyst, and a photosensitizer which, are elaborated . Finally, the chapter ends with a concluding remark on the challenges and future perspectives in this promising field.<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3