Oxidative Stress and Leukocytes Activation - The Two Keystones of Ischemia/Reperfusion Injury during Myocardial Infarction, Valve Disease, and Atrial Fibrillation

Author:

Matata Bashir1,Elahi Maqsood2

Affiliation:

1. Central Liverpool Primary Care Hub, Liverpool, United Kingdom

2. Heart & Lung Research Institute,Lahore,Pakistan

Abstract

Oxidative stress is a major contributor to ischaemia reperfusion injurymediated myocardial infarction. Coronary ischemia deprives the heart muscles of nutrients and oxygen in the areas away from the site of arterial blockage, rendering cardiomyocytes unable to utilise aerobic metabolism to support their energy requirements. Homeostatic intracellular signalling systems, such as the hypoxiainducible factor (HIF) transcription factor cascade, sense the low oxygen environment. This in turn stimulates the upregulation of numerous compensatory mechanisms which are ultimately involved in elevating anaerobic glycolysis and promoting angiogenesis and vascularization. The increased anaerobic metabolism increases the production of lactic acid hence metabolic acidosis. This leads to myocyte death and the expansion of the size of the original area of the infarct. Under normal aerobic conditions, the myocardium generally metabolises relatively high levels of adenosine triphosphates (ATP). In contrast, during ischemia, the shift in energy production to glycolysis results in the inefficient production of ATP and constitutes a pathological feature, and if not reversed early, it may lead to complications such as heart failure and ischemia-induced atrial or ventricular fibrillation. Despite the widespread use of fibrinolytic agents and new types of angioplasty procedures for the treatment of myocardial infarction, often new sets of complications persist. These include the occurrence of extensive tissue injury caused by myocardial reperfusion through the reintroduction of oxygen to the previous ischemic tissues because of the excessive generation of reactive oxygen species (ROSs) and depletion of antioxidants. Widespread production of ROS damages the plasma membrane and stimulates the release of various proinflammatory agents. Several proteins become denatured for example receptors, ionic channels, transporters, or components of transduction pathways through oxidation by ROS. Altered protein structure inhibits their functions leading to the disruption of vital cellular processes. The onset of reperfusion injury is further exacerbated by the activation and infiltration of the infarcted area by polymorphonuclear leukocytes (PMNs). Several studies have identified the release of different leukocyte intracellular factors during PMN activation such as selectins and b2-integrins to be related to the magnitude of tissue damage. Some studies have shown that antagonists for leukocytes intracellular factors such as selectins abrogate PMN activation and reduce the infarct size.More recent publications have shown that PMN activation is closely linked to the activation of other cells involved in the inflammatory response. For example, during myocardial ischemia–reperfusion injury, it has been shown that the activity of neutrophils is also modulated by lymphocytes and macrophages. This chapter summarises the interaction between oxidative stress, activation of different leukocytes and the release of factors involved in the generation of reperfusion injury.

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3