The Importance of Appropriate Taurine Formulations to Target Mitochondria

Author:

Heidari Reza1,Ommati M. Mehdi2

Affiliation:

1. Shiraz University of Medical Sciences,Pharmaceutical Sciences Research Center,Shiraz,Iran,

2. Henan University of Science and Technology,Henan Key Laboratory of Environmental and Animal Product Safety,Henan,Iran,471000,

Abstract

As repeatedly mentioned in the current book, taurine (TAU) is a very hydrophilic molecule. Hence, the passage of this amino acid through the physiological barriers (e.g., blood-brain barrier; BBB) is weak. In this context, experimental and clinical studies that mentioned the positive effects of TAU on CNS disorders administered a high dose of this amino acid (e.g., 12 g/day). For example, in an animal model of hepatic encephalopathy, we administered 1 g/kg of TAU to hyperammonemic rats to preserve their brain energy status and normalize their locomotor activity. In some cases, where anticonvulsant effects of TAU were evaluated; also, and a high dose of this amino acid was used (150 mg/kg). In other circumstances, such as investigations on the reproductive system, the blood-testis barrier (BTB) could act as an obstacle to the bioavailability of TAU. On the other hand, recent studies mentioned the importance of targeted delivery of molecules to organelles such as mitochondria. These data mention the importance of appropriate formulations of this amino acid to target brain tissue as well as cellular mitochondria. Perhaps, TAU failed to show significant and optimum therapeutic effects against human disease (e.g., neurological disorders) because of its inappropriate drug delivery system. Therefore, targeting tissues such as the brain with appropriate TAU-containing formulations is critical. The current chapter discusses possible formulations for bypassing physiological barriers (e.g., blood-brain barrier; BBB or BTB) and effectively targeting subcellular compartments with TAU. These data could help develop effective formulations for managing human diseases (e.g., CNS disorders or infertility issues in men).<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3