Recent Trends in Telemedicine, Challenges and Opportunities

Author:

Kannadhasan S.1,Nagarajan R.2,Shanmuganantham M.3

Affiliation:

1. Study World College of Engineering Coimbatore, Tamilnadu, India

2. Gnanamani College of Technology, Tamilnadu, India

3. Tamilnadu Government Polytechnic College, Tamilnadu, India

Abstract

Recent networking advancements in a variety of areas have encouraged the introduction of applications for the Internet of Things (IoT) and Artificial Intelligence (AI). This article analyses the implications of technologies like IoT and AI in Healthcare via a careful analysis of 85 peer-reviewed scientific journal publications. The study shows a previously unheard-of rise in the number of publications written in the last ten years, a wide range of publishing sources, a wide range of authors, and several technical papers in philosophy and architecture, all of which point to an evolving field with plenty of room for publication in the years to come. Medical research is currently combining the administration and analysis of telemedicine data as well as the development and use of artificial intelligence in numerous fields and enterprises (AI). Due to the difficulty of implementing telemedicine, it has been required to develop cutting-edge methods and expand its capabilities.

Publisher

BENTHAM SCIENCE PUBLISHERS

Reference17 articles.

1. Kristian K.; Machine Learning and Artificial Intelligence Two Fellow Travelers on the Quest for Intelligent Behavior in Machines Frontiers in Big Data 2018,1

2. Patel V.L.; Shortliffe E.H.; Stefanelli M.; Szolovits P.; Berthold M.R.; Bellazzi R.; Abu-Hanna A.; The coming of age of artificial intelligence in medicine. Artif Intell Med 2009,46(1),5-17

3. Topol E.J.; High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019,25(1),44-56

4. Chen I.Y.; Agrawal M.; Horng S.; Sontag D.; Robustly Extracting Medical Knowledge from EHRs: A Case Study of Learning a Health Knowledge Graph. Pac Symp Biocomput 2020,25,19-30

5. Brand L.; Nichols K.; Wang H.; Huang H.; Shen L.; Predicting Longitudinal Outcomes of Alzheimer’s Disease via a Tensor-Based Joint Classification and Regression Model. Pac Symp Biocomput 2020,25,7-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3