Multimedia Security in Audio Signal

Author:

Diwaker Ritesh1,Asrani Deepak1

Affiliation:

1. Department of Computer Science and Engineering, BN College of Engineering and Technology, Lucknow, India

Abstract

The security of Digital media has been varying continuously due to advanced malware attacks. Multimedia security has become one of the major concerns since new technologies are introduced. The proposed paper applied the watermarking technique in digital audio signals in which unique data is inserted in one-dimensional data in such a way that it must not affect the major information of the audio signal. The hybrid decomposition scheme has been applied to the audio data in order to extract features in terms of energy bands. The data is kept hidden in a low significant energy band that contains less information. This watermarking technique ensures the ownership of the multimedia data. Only authorized authors can be able to claim ownership of the audio data. The correct authorization of audio data can be proven by the extraction method in which the hidden watermark data has been extracted back to its original form without leaving any distortion in audio data. The proposed work introduces a hybrid approach to watermarking 2D data into an audio file. A hybrid audio decomposition technique was introduced by the proposed scheme in which a dual form of audio decomposition method has been applied containing Fast Fourier transform (FFT) and Cordic QR scheme. The correct location from the energy band has been found to embed the watermark data. Before the embedding procedure, the watermarking data has been selected. The proposed method selects an image containing information as a watermark that is first encrypted before initiating the embedding process. Watermark Encryption has been done using a cyclic coding algorithm and Arnold’s cat map. The disintegration of the audio file will finally result in Q and R matrices. Both such matrices are of orthogonal type. Then, the encrypted watermark data has been implanted in a random fashion in the R component of decomposed audio data during the embedding process. The inverse procedure has been applied for the watermark extraction and decryption process.<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3