Coconut Shell Derived Carbon Reinforced Polymer Composite Films for Packaging Applications

Author:

Chandrasekhar Gautam1,Rangari Vijaya1

Affiliation:

1. Department of Materials Science and Engineering, Tuskegee University, Tuskegee, AL 36088, USA

Abstract

With the advancement toward global sustainability, there is a widespread demand for sustainable materials that can be used for various applications. Carbon has gained much attention in the past few decades due to its scope of utilization in energy and environment related applications. Biomass resources are considered a prominent precursor for the synthesis of carbon-based materials due to their availability and economic viability. In this study, high-quality graphitic carbon is synthesized from Coconut Shell Powder (CSP) by pyrolysis and reinforced into a low-density polyethylene (LDPE) matrix for fabricating films for packaging applications. A custom-built high-temperature autogenic pressure reactor was used for conducting the pyrolysis to synthesize carbon from the coconut shell powder and a blown film extruder was used for fabricating composite films. For preparing the films, coconut shell powder-derived carbon was added to the LDPE matrix at various weight percent loadings of 0.25, 0.5, and 1 wt.%, respectively. Various analytical techniques such as scanning electron microscopy, X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, tensile test, and differential scanning calorimetry were used for studying the properties of carbon and LDPE/carbon composite films. Upon adding carbon as fillers, there were significant improvements in the tensile and thermal degradation properties of the polymer carbon composite films. Upon the incorporation of carbon into the LDPE matrix, the crystallinity and tensile strength were found to improve by a maximum of 29% and 13%, respectively.

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3