Effect of pH variation on cross-linking of water-soluble and acid-soluble chitosan with sodium tripolyphosphate and gallium-67

Author:

Kamali Narjes Damavandi1,Alishahi Alireza1,Heidarieh Marzieh2,Rajabifar Saeed3,Mirsadeghi Hojat1,Kordjazi Moazame1

Affiliation:

1. Department ofFishery, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resource, Gorgan, Iran

2. Department of veterinary and animal science, Nuclear Agricultural School, Nuclear Science and Technology Research Instittute, Karaj, Iran

3. Nuclear Medical Research School, Nuclear Agricultural School, Nuclear Science and Technology Research Instittute, Karaj, Iran

Abstract

Background: Chitosan is a cationic biopolymer obtained from deacetylating chitin, a naturally compoundpresent in crustacean shell, fungi and exoskeleton of insects. Chitosan has various applications including drug and gene delivery systems, wound dressing and as scaffolds for tissue engineering, agriculture, textile, food and feed nanotechnology, waste water treatments. chitosan-TPP particle figure out as the most important and stable nanoparticle for chitosan application in various fields. Objective: At this study chitosan was chemically modified by sodium tripolyphosphate (TPP). Afterward, TPP-chitosan was radiolabeled with gallium-67 radionuclide. The effect of several factors on labeling yield such as chitosan solubility, acidity and concentration of TPP-chitosansolution, incubation time with gallium-67 were investigated. Methods: To prepare [67Ga] gallium-chitosan complex, chitosan (0.5 ml) was dissolved in 2.2 mCi of [67Ga] gallium chloride solution. The obtained solution was stirred for 5 min and then was kept for 30 min at room temperature. Radiochemical purity and radiolabeling yield was measured via radiochromatography that it was performed by using a radio thin-layer chromatography (TLC) scanner instrument. To investigate the effect of chitosan kind and concentration on the labeling yield, two kinds of chitosan (acid-soluble chitosan and water-soluble chitosan) with two different concentrations (1% and 0.5%) at different pH were used. In addition, labeling efficiency and stability of the 67Ga-TPP-chitosan complex (acidic/water soluble chitosan) at both concentrations (0.5 and 1%) at room temperature was assessed for 30, 45 and 60 min. Results: The incubation time has not significant effect on labeling yield. The acidic soluble chitosan, which has highest radiolabeling yield at pH=9.3-10.4, water soluble chitosan showed the highest radiolabeling yields at pH > 5. Also, the prepared complex was stable in the final solution at room temperature and can even be used 24 hours after preparation for further application. Conclusion: Taken together, the TPP modified water soluble chitosan at concentration 0.5 % depicted the highest radiochemical yield (>95 %) at the optimized condition (pH= 6.2–7.6). Therefore, TPP modified water soluble chitosan can be an effective carrier for therapeutic radionuclides for tumor treatment.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3