Synthesis of Novel Cationic Photosensitizers Derived from Chlorin for Application in Photodynamic Therapy of Cancer

Author:

Ranjbari Faride1ORCID,Rashidi Mohammad R.1ORCID,Hemmati Salar2ORCID,Safari Ebrahim3,Tajalli Habib4ORCID

Affiliation:

1. Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

2. Department of Pharmacy, Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran

3. Faculty of Physics, University of Tabriz, Tabriz, Iran

4. Biophotonic Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran

Abstract

Background: Chlorins (dihydroporphyrins) are tetrapyrrole-based compounds that are more effective in photodynamic therapy than porphyrins. The instability of the compounds and their oxidation to porphyrin limits the use of these compounds. However, the design and synthesis of new stable chlorin-based cationic photosensitizers with the potential for use in cancer photodynamic therapy can be interesting. Methods: In this research, new tetracationic meso substituted chlorins were designed, synthesized, and characterized. After determining the chemical structure and spectroscopic properties of five new photosensitizers, their phototoxicity on breast cancer cell lines (MCF-7) was investigated under optimized conditions in terms of factors such as photosensitizer concentrations and light intensity. Results: The results of cytotoxicity assayed by the MTT method showed that the synthesized compounds, even up to the concentration of 50 μM had very low toxicity in the absence of light, which indicates their safety under dark conditions. Compounds A1 and A3 with the best physicochemical properties such as solubility, high absorption intensity in the effective range of photodynamic therapy, and the high quantum yield of singlet oxygen, had a good toxic effect (IC50 = 0.5 μM) on the cancer cells (MCF-7) in the presence of laser light. Conclusion: According to the obtained results, compounds A1 and A3 have the potential to continue research on PDT for confirmation and use in treatment.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3