Determination of Gamma Camera’s Calibration Factors for Quantitation of Diagnostic Radionuclides in Simultaneous Scattering and Attenuation Correction

Author:

Asgari Afrouz1,Ashoor Mansour1,Sarkhosh Leila1,Khorshidi Abdollah2,Shokrani Parvaneh3

Affiliation:

1. Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 113653486, Tehran, Iran

2. School of Paramedical, Gerash University of Medical Science, P.O. Box: 7441758666, Gerash, Iran

3. Isfahan University of Medical Sciences, P.O. Box: 8174673461, Isfahan, Iran

Abstract

Objective: The characterization of cancerous tissue and bone metastasis can be distinguished by accurate assessment of accumulated uptake and activity from different radioisotopes. The various parameters and phenomena such as calibration factor, Compton scattering, attenuation and penetration intrinsicallyinfluence calibration equation, and the qualification of images as well. Methods: The camera calibration factor (CF) translates reconstructed count map into absolute activity map, which is determined by both planar and tomographic scans using different phantom geometries. In this study, the CF for radionuclides of Tc-99m and Sm-153 in soft tissue and bone was simulated by the Monte Carlo method, and experimental results were obtained in equivalent tissue and bone phantoms. It may be employed for the simultaneous correction of the scattering and attenuation rays interacted with the camera, leading to corrected counts. Also, the target depth (d) may be estimated by a combination of scattering and photoelectric functions, which we have published before. Results: The calibrated equations for soft tissue phantom for the radionuclides were obtained by RTc = - 10d+ 300 and RSm = -8d + 100, and the relative errors between the simulated and experimental results were 4.5% and 3.1%, respectively. The equations for bone phantom were RTc = -30d + 300 and RSm = - 10d + 100, and the relative errors were 5.4% and 5.6%. The R and d are in terms of cpm/mCi and cm. Besides, the collimators' impact was evaluated on the camera response, and the relevant equations were obtained by the Monte Carlo method. The calibrated equations as a function of various radiation angles on the center of camera's cells without using collimator indicated that both sources have the same quadratic coefficient by -2E-08 and same vertical width from the origin by 8E-05. Conclusion: The presented procedure may help determine the absorbed dose in the target and likewise optimize treatment planning.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3