Synthesis and Characterization of Magnetic Nanoparticles and its Study to Displace Oil from a Hele-Shaw Cell

Author:

Fossati Ana B.12,Yanina L. Roht3,Alho Miriam M.14,Irene Ippolito5,Jacobo Silvia E.12

Affiliation:

1. Departamento de Química, Universidad de Buenos Aires. Facultad de Ingeniería, Buenos Aires, Argentina

2. Universidad de Buenos Aires, Facultad de Ingeniería, Laboratorio Químico de Materiales Magnéticos Aplicados a la Ingeniería (LaQuiMMAI), Instituto de Química Aplicada a la Ingeniería (IQAI), Buenos Aires, Argentina

3. Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Buenos Aires, Argentina

4. Universidad de Buenos Aires, Facultad de Ingeniería, Laboratorio de Materiales Orgánicos (LabMOr), Instituto de Química Aplicada a la Ingeniería (IQAI), Buenos Aires, Argentina

5. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos. Buenos Aires, Argentina

Abstract

Introduction:: Oil spill incidents caused by human activities can cause major habitat damage and pose serious threats to all living organisms living on and within sources of water and soil. Finding a solution for oil spills is necessary to protect ecosystems, the environment, and health. Nanotechnology seems to be an interesting tool in many applications, such as soil and water remediation and oil recovery. Nanoparticles are a good alternative since they are not as expensive as chemicals used to remove oil. Objective:: The prime purpose of this research work was the comparison of the additional displacement of sunflower oil from a single fracture using ferrofluids prepared with bare and novel covalent functionalized magnetic nanoparticles. Experiences were performed at constant nanoparticle concentration and variable flow rate and at constant flow rate and variable nanoparticle concentration. The novel ferrofluid stability and its recovery properties related to a low-cost process were explored. Methods:: Tests were carried out by image analysis. Stable ferrofluids were prepared using magnetic nanoparticles (MNPs) and novel covalent functionalized magnetic nanoparticles (MSMs). Their ability to displace the residual oil in a single fracture model previously invaded by an aqueous brine solution was tested. A flow channel of a single fracture by a typical transparent Hele-Shaw cell with 12% of its area covered by a random distribution of obstacles was modeled. Oil recovery was performed at three different flow rates: 0.36, 1.80, and 3.60 mL min-1, using relatively low ferrofluid concentrations (0.0125 wt%). Oil recovery was also carried out with MSM ferrofluid at a constant flow rate of 1.80 and 3.60 mL min-1 at different nanoparticle concentrations (0.00625, 0.0125, and 0.025 wt%). Results:: Ferrofluids prepared with MSMs were more effective for oil recovery than those prepared with bare nanoparticles due to their surfactant behavior for all flows studied here. A 7.86% extra percentage of oil was removed after brine flooding. Oil recovery using MSM ferrofluid at a constant flow rate of 1.80 and 3.60 mL min-1 increased linearly with nanoparticle concentration. Magnetic nanoparticles can be efficiently recovered and reused in at least three oil displacements for the fracture model used as covalent functionalization promotes ferrofluids' stability. Conclusion:: The characteristics of the MSM amphiphilic novel coating cause the nanoparticles to be attracted to both water and oil, enhancing oil displacement. These results indicate that this novel material, whose structure stability is related to the covalent bonding of organic coating, can be considered for remediation and oil recovery in fractured media

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3