Recent Advances in Three-Component Cyclocondensation of Dimedone with Aldehydes and Malononitrile for Construction of Tetrahydrobenzo[b]pyrans Using Organocatalysts

Author:

Kiyani Hamzeh1

Affiliation:

1. School of Chemistry, Damghan University, Damghan, Iran

Abstract

Background: The majority of naturally occurring compounds, pharmaceuticals, and drug-candidate molecules possess heterocyclic scaffolds. In this context, tetrahydobenzo[b]pyrans are of considerable importance. In the line with the synthesis of these valuable heterocyclic compounds, the researchers tried to synthesize these molecules using different organocatalysts. The development of new strategies for three-component condensation of dimedone, various aldehydes and malononitrile for construction of tetrahydrobenzo[b]pyrans is of particular interest to organic chemists and pharmacologists. Objective: In this review, three-component catalyzed synthesis of tetrahydrobenzo[b]pyran compounds is introduced, focusing on the developments in the use of organocatalysts. Organocatalytic approaches were investigated for the synthesis of tetrahydrobenzo[b]pyrans. This contribution covers the literature concerning the synthesis of heterocycles referred to, in recent times. Conclusion: This review article is associated with the study of the three-component synthesis of tetrahydrobenzo[b]pyrans using organocatalysts. This review also provides an insight into the importance of these heterocycles. In the vast majority of these reactions, water and water-ethanol system have been used as green solvent media for implementation of them. The use of green solvents, the development of less toxic and promising reagents/catalysts as well as the design of inexpensive and reliable approaches are some of the principles of green chemistry, and most of the methods are benefited from them. Tetrahydrobenzo[b]pyrans and organocatalysts open avenue ofnew horizons. The recyclability of the many of these organocatalysts offers an additional merit for the use of these catalysts in 3-CR of aldehydes, dimedone, and malononitrile reactions.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3