SO3H-functionalized Zeolite-Y as an Efficient Nanocatalyst for the Synthesis of Nbenzimidazole- 2-aryl-4-thiazolidinones and tri-substituted Imidazoles

Author:

Kalhor Mehdi1ORCID,Zarnegar Zohre1ORCID,Seyedzade Zahra1,Banibairami Soodabeh1

Affiliation:

1. Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran

Abstract

Background: SO3H-functionalized zeolite-Y was prepared and used as a catalyst for the synthesis of 2-aryl-N-benzimidazole-4-thiazolidinones and tri-substituted imidazoles at ambient conditions. Objective: The goals of this catalytic method include excellent yields and high purity, inexpensive procedure and ease of product isolation, the use of nontoxic and heterogeneous acid catalyst, shorter reaction times and milder conditions. Materials and Methods: NMR spectra were recorded on Brucker spectrophotometer using Me4Si as internal standard. Mass spectra were recorded on an Agilent Technology 5975C VL MSD with tripe-axis detector. FTIR spectra were obtained with KBr disc on a galaxy series FT-IR 5000 spectrometer. The surface morphology of nanostructures was analyzed by FE-SEM (EVO LS 10, Zeiss, Carl Zeiss, Germany). BET analysis were measured at 196 °C by a Japan Belsorb II system after the samples were vacuum dried at 150°C overnight. Results: The NSZ was characterized by FT-IR, FESEM, EDX, XRF, and BET. The catalytic activity of NSZ was investigated for synthesis of 1,3-tiazolidin-4-ones in H2O/Acetone at room temperature. Moreover, NSZ was used for synthesis of tri-substituted imidazoles at 60 °C via solvent-free condensation. Different kinds of aromatic aldehydes were converted to the corresponding of products with good to excellent yields. Conclusion: Sulfonated zeolite-Y was as an efficient catalyst for the preparation of N-benzimidazole-2-aryl-1,3- thiazolidin-4-ones and 2,4,5-triaryl-1H-imidazoles. High reaction rates, elimination toxic solvent, simple experimental procedure and reusability of the catalyst are the important features of this protocol.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3