Indol-2-Carboxylic Acid Esters Containing N-Phenylpiperazine Moiety - Preparation and Cholinesterase-inhibiting Activity

Author:

Padrtová Tereza1ORCID,Marvanová Pavlína1,Kubínová Renáta2,Csöllei Jozef1,Farsa Oldřich1,Goněc Tomáš1,Odehnalová Klára1,Opatřilová Radka1,Pazourek Jiří1,Sychrová Alice2,Šmejkal Karel2,Mokrý Petr1

Affiliation:

1. Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic

2. Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic

Abstract

Background: The indole derivatives and the N-phenylpiperazine fragment represent interesting molecular moieties suitable for the research of new potentially biologically active compounds. This study was undertaken to identify if indol-2-carboxylic acid esters containing N-phenylpiperazine moiety possess acetylcholinesterase and butyrylcholinesterase inhibitory activity. Materials and Methods: The study dealt with the synthesis of a novel series of analogs of 1H-indole-2- carboxylic acid and 3-methyl-1H-indole-2-carboxylic acid. The structure of the derivatives was represented by the indolylcarbonyloxyaminopropanol skeleton with the attached N-phenylpiperazine or diethylamine moiety, which formed a basic part of the molecule. The final products were synthesized as dihydrochloride salts, fumaric acid salts, and quaternary ammonium salts. The first step of the synthetic pathway led to the preparation of esters of 1H-indole-2-carboxylic acid from the commercially available 1H-indole-2-carboxylic acid. The Fischer indole synthesis was used to synthesize derivatives of 3-methyl-1H-indole-2-carboxylic acid. Results and Discussion: Final 18 indolylcarbonyloxyaminopropanols in the form of dihydrochlorides, fumarates, and quaternary ammonium salts were prepared using various optimization ways. The very efficient way for the formation of 3-methyl-1H-indole-2-carboxylate (Fischer indole cyclization product) was the one-pot synthesis of phenylhydrazine with methyl 2-oxobutanoate with acetic acid and sulphuric acid as catalysts. Conclusion: Most of the derivatives comprised of an attached N-phenylpiperazine group, which formed a basic part of the molecule and in which the phenyl ring was substituted in position C-2 or C-4. The synthesized compounds were subjected to cholinesterase-inhibiting activity evaluation, by modified Ellman method. Quaternary ammonium salt of 1H-indole-2-carboxylic acid which contain N-phenylpiperazine fragment with nitro group in position C-4 (7c) demonstrated the most potent activity against acetylcholinesterase.

Funder

ITA VFU Brno

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3