A Study of the Regiochemistry in the Synthesis of Pyrano[3,4-c]pyridines

Author:

Sirakanyan Samvel N.1,Spinelli Domenico2,Kartsev Victor A.3,Geronikaki Athina4,Hakobyan Elmira K.1,Ayvazyan Armen G.5,Tamazyan Rafael A.5,Hovakimyan Anush A.1

Affiliation:

1. Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Yerevan, Armenia

2. Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum- Universita di Bologna, Via F. Selmi 2, Bologna 40126, Italy

3. InterBioScreen, a/ya 218, Moscow 119019, Russian Federation

4. School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

5. Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Molecule Structure Research Centre, Yerevan, Armenia

Abstract

Aims: Biological studies have shown that some condensed derivatives of pyrano[3,4- c]pyridines 6 exhibited pronounced biological activity. Considering these results, the principal aim of this work is to study the regiochemistry of the synthesis of pyrano[3,4-c]pyridines 6, to optimize the reaction conditions and thus to increase the previously observed low yields of pyrano[ 3,4-c]pyridines. Background: Within this research line, some of us, several years ago, developed a method for the preparation of 6-oxopyrano[3,4-c]pyridines 6 starting from 2,2-dimethyltetrahydro-4Hpyran- 4-one 1. In these studies, we separated and identified only the most expected reaction products 6-oxopyrano[3,4-c]pyridines 6. On the basis of this datum, we suggested that the enamines 2 and 3, reacting with acyl chlorides, were not acylated at C-3 and that 5-acylpyran-4- ones 4 were the only products of the reaction. We have justified this result by considering the steric effects exerted by the two methyl groups present in the pyran ring. Moreover, we did not identify the products at the second reaction center: that is, the isomeric compounds 7 and this result was justified considering the different reactivity of aliphatic and cyclic ketone groups. Objectives: The main objectives of this work were: • implementation of the reaction of 2,2-dimethyltetrahydro-4H-pyran-4-one 1 with morpholine; • acylation of the obtained enamines 2 and 3 with acyl chlorides under Stork conditions; • synthesis of pyranopyridines 6-8 based on β-diketones: 3-acylpyran-4-ones 4 and 5-acylpyran-4-ones 5; • confirmation of the structure of the obtained compounds. Methods: For the synthesis of pyrano[3,4-c]pyridines known methods were used. Thus, the reaction of starting 2,2- dimethyltetrahydro-4H-pyran-4-one 1 with morpholine in benzene led to the formation of isomeric enamines 2 and 3. After, they were acylated with acyl chlorides under Stork conditions with formation of two β -diketones: 3- acylpyran-4-ones 4 and 5-acylpyran-4-ones 5. Finally, in order to obtain the aimed pyrano[3,4-c]pyridines 6, the obtained β-dicarbonyl compounds 4 and 5 (as a mixture of isomers) were reacted with 2-cyanoacetamide in ethanol in the presence of diethylamine, according to the Knoevenagel condensation. The structure of the obtained compounds has been unambiguously confirmed by using a wide spectrum of physico-chemical methods (NMR, IR, Xray structural and elemental analysis) and, in the instance of compounds 7, also by an alternative synthesis. Results: Starting from the 2,2-dimethyltetrahydro-4H-pyran-4-one 1 a series of new and already known 6- oxopyrano[3,4-c]pyridines 6 were synthesized. As a result of the study of the regiochemistry in the synthesis of pyrano[3,4-c]pyridines, of the four possible isomer pyranopyridines 6-9, we have succeeded in identifying three of them (6-8). Thus, isomer pyranopyridines 7 and 8 were identified in the mixture with the main compounds 6. Moreover, isomeric pyrano[3,4-c]pyridines 8 were detected when alkyl groups are present in the starting compounds 4 and 5, while isomeric pyrano[4,3-b]pyridines 7 were detected in the case of the presence of aromatic groups. Unfortunately, we have not been able to isolate compounds 7 and 8 in the pure state from the reaction mixtures. At now, we have not been able to detect and identify isomeric pyrano[4,3-b]pyridines 9. On the whole, we have been able to better the effectiveness of the synthesis of pyrano[3,4-c]pyridines 6, increasing their yields by ≈ 5-15%. Conclusion: As a result of our investigation, we have found that the acylation reaction of enamines 2 and 3 and the cyclization reaction of β-diketones 4 and 5 are not regioselective. Therefore, we can state that enamines 2 and 3 can be acylated at both C-3 and C-5 with the formation of a mixture of 3-acylpyran-4-ones 4 and of 5-acylpyran-4-ones 5. Their condensation with 2-cyanoacetamide led to the formation of mixtures of regioisomeric pyranopyridines 6- 8. In conclusion, as a result of our present research, we can say that we have been able to increase the effectiveness of the synthesis of pyranopyridines, largely improving our previous results. Other: Now, we are working to look for the fourth isomeric pyrano[4,3-b]pyridines 9 by using the most modern and fine methods. Moreover, we hope that we shall be able to separate the mixtures of pyranopyridines 6-8: any way they can be used for further syntheses as they are.

Funder

Science Committee of RA

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3