The History of the Glycosidase Inhibiting Hyacinthacine C-type Alkaloids: From Discovery to Synthesis.

Author:

Carroll Anthony W.1,Pyne Stephen G.1

Affiliation:

1. School of Chemistry, University of Wollongong, Wollongong, New South Wales, Wollongong NSW 2522, Australia

Abstract

Background: The inherent glycosidase inhibitory activity and potentially therapeutic value of the polyhydroxylated pyrrolizidine alkaloids containing a hydroxymethyl substituent at the C-3 position have been well documented. Belonging to this class, the naturally occurring hyacinthacine C-type alkaloids are of general interest among iminosugar researchers. Their selective micromolar α -glycosidase inhibitory ranges (10 – 100 μM) suggest that these azasugars are potential leads for treating type II diabetes. However, the structures of hyacinthacine C1, C3 and C4 are insecure with hyacinthacine C5 being recently corrected. Objective: This review presents the hyacinthacine C-type alkaloids: their first discovery to the most recent advancements on the structures, biological activities and total synthesis. Conclusion: The hyacinthacine C-type alkaloids are of exponentially increasing interest and will undoubtedly continue to be reported as synthetic targets. They represent a challenging but rewarding synthetic feat for the community of those interested in accessing biologically active iminosugars. Since 2009, ten total syntheses have been employed towards accessing similarly related products but only three have assessed the glycosidase inhibitory activity of the final products. This suggests the need for an accessible and universal glycosidase inhibitory assay so to accurately determine the structure-activity relationship of how the hyacinthacine C-type alkaloids inhibit specific glycosidases. Confirming the correct structures of the hyacinthacine C-type alkaloids as well as accessing various analogues continues to strengthen the foundation towards a marketable treatment for type II diabetes and other glycosidase related illnesses.

Funder

Australia Research Council

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

Reference78 articles.

1. Robins DJ. The Pyrrolizidine Alkaloids.

2. Pass DA, Hogg GG, Russell RG, Edgar JA, Tence IM, Rikard-Bell L. Poisoning of chickens and ducks by pyrrolizidine alkaloids of

3. Bull LB, Culvenor CCJ, Dick AT.

4. Huxtable RJ. New aspects of the toxicology and pharmacology of pyrrolizidine alkaloids.

5. Allen JR, Hsu IC, Carstens LA. Dehydroretronecine-induced rhabdomyosarcomas in rats.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3