Synthesis, Antimicrobial and Antioxidant Activity of some New Pyrazolines Containing Azo Linkages

Author:

Hussein Awaz Jamil1

Affiliation:

1. Department of Chemistry/ College of Education/ Salahaddin University-Erbil, Kurdistan Region, Iraq

Abstract

Background: Pyrazolines and azo-pyrazolines are influential groups of heterocyclic compounds with two nitrogen atoms inside the five-membered ring. They play an important role in a wide range of biological processes, such as antifungal, antioxidant, antimalarial and other antimicrobial activities. Objective: The main objective of this study is to synthesize some new heterocyclic compounds with antioxidant and antimicrobial activity. Methods: One-pot three components and traditional synthesis of new azo-pyrazoline compounds were achieved in this work. The preparation process has been started by diazotizing 4-(6-methylbenzothiazol-2-yl) benzamine and its coupling reaction with 4-hydroxy acetophenone producing azo-acetophenone, followed by benzylation with benzyl chloride to form the starting material, azo-benzyloxy acetophenone. A series of substituted benzaldehydes were reacted with the latter compound via one pot and classical methods, forming new chalcones containing azo linkages and benzyloxy moieties, which were then converted into new target azo-pyrazoline derivatives. Results: The structures of the synthesized compounds were confirmed by spectroscopic techniques using FT-IR, 1H-NMR, 13C-NMR, and 13C- DEPT- 135 spectra. Finally, the synthesized compounds were screened for their antioxidant and antimicrobial activities against Staphylococcus aureus and Escherichia coli. Conclusion: Overall, the one-pot three-component synthesis of pyrazoline compounds generally provides advantages in terms of efficiency, simplicity, and time-consumption compared to classical synthesis methods. Hence, the study advocates the one-pot method because it eliminates the tedious process of making chalcones, which takes time, materials, and unnecessary effort. Therefore, this is the most convenient and effective approach to green chemistry.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3