Affiliation:
1. Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
Abstract
Abstract:
Among the many reports published on strategies applicable to synthesizing pyrazolines and its analogs, The 1,3-dipolar cycloaddition offers a remarkably wide range of utility. Many 1,3-dipolar cycloaddition reactions used for the synthesis of pyrazolines provide better selectivity, eco-friendly, and less expensive chemical processes. In the presented study, we have reviewed various recently adopted strategies for the synthesis of pyrazoline, which followed the 1,3-dipolar cycloaddition reactions mechanism and classified them based on starting materials such as nitrile imines, diazo compounds, different zwitter ions, chalcones, and isoprene units. The manuscript also focused on the synthesis of pyrazolines starting from Seyferth−Gilbert reagents (SGR) and Psilostachyin (PSH) reagents. We hope this work will help those engaged or have plans to research pyrazoline or its analogs, as synthetic protocols based on starting material are rarely available for pyrazolines. Thus, this article holds a valuable complement to the development of newer pyrazoline and its derivatives.
Publisher
Bentham Science Publishers Ltd.
Subject
Organic Chemistry,Biochemistry