Recent Advances in the Synthesis of Amides via Oxime Rearrangements and its Applications

Author:

Debnath Pradip1

Affiliation:

1. Department of Chemistry, Ramkrishna Mahavidyalaya, Kailashahar, Unakoti, Tripura-799277, India

Abstract

Background: Amide bond formation reactions are the most important transformations in (bio)organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method used for the preparation of secondary amides from ketoximes. But, most of the traditional protocols used for the Beckmann rearrangement create enormous amount of wastes. Thus, the atom economical synthesis of amides has got high priority among the chemists. However, under classical Beckmann conditions, aldoximes do not rearrange into the corresponding primary amides. Indeed, reactions of aldoximes lead to nitriles. In recent years, it has been demonstrated that the aldoxime rearrangements can be carried out efficiently and selectively with the help of metal catalysts. <p> Objective: This review focuses on the recent progress in the amides synthesis via ketoxime and aldoxime rearrangements. Applications of the rearrangements in the synthesis of heterocycles and natural products are also covered in this review. Conclusion: In the first part of the review, relevant pathways of oxime rearrangements are discussed and it is shown that several catalytic systems have been developed for the atom-economical synthesis of N-substituted amides from ketoximes. But similar reactions with aldoximes are, however, more challenging. The advances reached in the aldoxime rearrangement are also covered in this review. It is revealed that a large variety of homogeneous and heterogeneous metal catalysts have been developed to affect aldoxime rearrangements.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3