Copper Catalysts in the Synthesis of Five-membered N-polyheterocycles

Author:

Kaur Navjeet1

Affiliation:

1. Department of Chemistry, Banasthali Vidyapith, Banasthali 304022 (Rajasthan), India

Abstract

Background: Due to significant biological activity associated with N-, O- and S-heterocycles, a number of reports for their synthesis have appeared in recent decades. Traditional approaches require expensive or highly specialized equipment or would be of limited use to the synthetic organic chemist due to their highly inconvenient approaches. This review summarizes the applications of copper catalysts with the emphasis on their synthetic applications for nitrogen bearing polyheterocylces. In summary, this review article describes the synthesis of a number of five-membered poly heterocyclic rings. Objective: Nowadays new approaches that employ atom-economical and efficient pathway have been developed. The researchers are following natural models to design and synthesize heterocycles. The transition metal catalyzed protocols have attracted the attention as compared to other synthetic methodologies because they use easily available substrates to build multiple substituted complicated molecules directly under mild conditions. In organic synthesis, constituted by transition metal catalyzed coupling transformations are one of the most powerful and useful protocols. The N-heterocycles are synthesized by this convenient and useful tool. Conclusion: The efficient and chemoselective synthesis of heterocycles by this technique has appeared as an important tool. This review shows a highly dynamic research field and the employment of copper catalysts in organic synthesis. Several strategies have been pointed out in the past few years, to meet more sustainable, efficient and environmentally benign chemical products and procedures. The catalytic strategies have been the focus of intense research because they avoid the use of toxic reagents. Among these catalytic strategies, highly rewarding and an important method in heterocycles synthesis is metal catalyzed synthesis.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aziridine synthesis from imines-I;Synthesis of Aziridines and Oxaziridines from Imines;2024

2. Oxaziridine synthesis from imines;Synthesis of Aziridines and Oxaziridines from Imines;2024

3. Oxaziridine synthesis from imines using meta-chloroperoxybenzoic acid;Synthesis of Aziridines and Oxaziridines from Imines;2024

4. Aziridine synthesis by metal-catalyzed addition of biphenyl imines to ethyl diazoacetate;Synthesis of Aziridines and Oxaziridines from Imines;2024

5. Synthesis of oxazines, benzoxazines, thiopyrans, and thiazines;Synthesis of 6- and 7-Membered Heterocycles;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3