New Stable Cu(I) Catalyst Supported on Weakly Acidic Polyacrylate Resin for “Click” Chemistry: Synthesis of 1,2,3-Triazole and Novel Synthesis of 1,2,3-Triazol-5-amine

Author:

Kore Nitin1,Pazdera Pavel1

Affiliation:

1. Centre for Syntheses at Sustainable Conditions and their Management, Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic

Abstract

Aim and Objective: The aim of our work is to demonstrate catalytic application of our previously reported simple Cu(I) ion supported on weakly acidic polyacrylate resin for Azide-Alkyne cycloaddition (CuAAC), Azide-Nitrile cycloaddition and in synthesis of 1-azido-4-methoxybenzene. Material and Method: To investigate the catalytic ability of title Cu(I) catalyst we performed the reaction of different aryl azide with a broader spectrum of different terminal alkyne and nitrile compounds. Results: The title supported Cu(I) catalyzes cycloaddition reactions of aryl azide with aliphatic, aromatic, and heterocyclic terminal alkynes and corresponding 1,4-disubstituted 1,2,3-triazoles were obtained almost in the quantitative yields. The cycloaddition reactions of aryl azide with nitriles consisting α-hydrogen on carbon attached to cyano group under catalytic action of the title supported Cu(I) ended up with the formation of 1,4- disubstituted 1,2,3-triazol-5-amines in quantitative yields. The title catalyst found to be active for nucleophilic substitution of aide group (-N3) to 4-Iodoanisole. Conclusion: It was found that both studied Azide-Alkyne cycloaddition and Azide-Nitrile cycloaddition syntheses are regioselective and quantitative in yield. The title catalyst used is economical, easily preparable, separable, and recyclable. Therefore, the studied syntheses may be regarded as environmentally clean and green processes.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3