A Straightforward Synthesis of 4,7-Disubstituted 1,4-Oxazepanes via a Bronsted Acid-Catalyzed Intramolecular Etherification Reaction

Author:

Castillo Juan-Carlos1,Portilla Jaime2,Insuasty Braulio1,Quiroga Jairo1,Abonia Rodrigo1

Affiliation:

1. Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A. 25360, Cali, Colombia

2. Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Bogotá 111711, Colombia

Abstract

Aim and Objective: Although many synthetic methods are known for seven-membered N,Oheterocycles, most of them focus on fused benzoxazepines. In fact, an exhaustive searching of the literature revealed that very few synthetic approaches for non-fused 1,4-oxazepanes have been reported. Thus, straightforward and efficient synthetic strategies for the construction of diversely substituted 1,4-oxazepanes would be a welcome access to a relatively underexplored chemical space. Two of these strategies were undertaken in this study. Materials and Methods: One of our reactions proceeded by the treatment of ethanolamines with polyformaldehyde and N-vinylpyrrolidin-2-one in ACN as solvent at room temperature in order to obtain the title 1,4- oxazepane derivatives. Alternatively, through a careful temperature control, analog structures were selectively obtained from a H2SO4 catalyzed intramolecular etherification reaction of diversely substituted N-tethered bisalcohols in p-dioxane as solvent. Results: Based on intramolecular etherifications, two strategies (i.e. a three-component Mannich-type approach and cyclization of N-tethered bis-alcohols), were implemented for the synthesis of novel and diversely 4,7- disubstituted 1,4-oxazepanes in moderate to good yields. Structures of the new obtained compounds were confirmed by 1- and 2D NMR techniques as well as MS spectra. Conclusion: According to the results, the above intramolecular etherification reactions proceeded with the formation of benzylic carbocations as the key intermediates for the generation of the title compounds. Temperature and the nature of the R1 substituent in the N-tethered bis-alcohols were critical variables for the selective formation of the desired products from this kind of precursors.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3