Highly Reactive Heterogeneous Nanofibers Catalyst based on [Mo154] Clusters for Green Aerobic Oxidation of Sulfur Mustard Analogues under Ambient Conditions

Author:

Haddad Reza1ORCID

Affiliation:

1. Department of Police Equipment and Technologies, Policing Sciences and Social Studies Institute, Tehran, Iran

Abstract

Background: Due to the increasing chemical and biological threats posed by terrorist attacks, there is a need to design and prepare nanofibers (NFs) with the ability to neutralize CWAs. For this purpose polyacrylonitrile NFs and polyoxomolybdate [Mo154] (abbreviated as PAN NFs/[Mo154]) as a heterogeneous catalyst was prepared by electrospinning method with a diameter of about 100nm. Objective: The PAN NFs/[Mo154] catalyze the selective aerobic oxidation of sulfur mustard stim-ulants, such as 2-chloroethyl ethyl sulfide (2-CEES) and 2-chloroethyl phenyl sulfide (2-CEPS) under green and “ambient” conditions (25 oC, 1atm O2) in the presence of ethanol with high efficiency and selectivity. 2-CEES was selected as a model reaction to optimize the parameters of the reaction. Method: The progress of the reaction was evaluated after different times using GC-FID, GC-MS and TLC. The reaction product was also confirmed by 1H-NMR spectroscopy. Result: The aerobic oxidation results of 2-CEES showed that PAN NFs/[Mo154] have a conver-sion of 98% to produce only a nontoxic product, 2-CEESO with the selectivity of 100% after 45min. The results were performed using [Mo154] without any PAN NFs for comparison whereas [Mo154] converts only 52% of 2-CEES under identical conditions. Conclusion: Heterogeneous PAN NFs/[Mo154] catalyst was reused after washing with solvent up to 5 steps without leaching of [Mo154] from PAN NFs and without any loss in efficiency due to the morphology of NFs. In addition to the recovery of PAN NFs/[Mo154] in different cycles, the use of FT-IR, UV-Vis and TEM techniques confirms the stability and morphology of PAN NFs/[Mo154] after the fifth cycle, 2-CEES oxidation. According to our information, this report is the first use of PAN NFs enriched with [Mo154] for aerobic oxidation of sulfur mustard simulants.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3