Synthesis and Liquid Crystalline Properties of Low Molecular Weight Bis-Chalcone Compounds

Author:

Sasidharan Anju K1,Mathew Jomon1,Achalkumar Ammathnadu S.2,Mathews Manoj1ORCID

Affiliation:

1. Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Kozhikode-673008, Affiliated to University of Calicut, Kerala, India

2. Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

Abstract

Aim: In this paper, we report on the synthesis and liquid crystalline properties of some low molecular weight bis-chalcone compounds derived from acetone, cyclopentanone and cyclohexanone mesogenic cores. Background: Structurally bis-chalcones belong to a broader family of chalcone compounds. Chalcone is a compound that consists of two aromatic rings linked by an unsaturated objective. Liquid crystalline chalcones are prepared by aliphatic chain substituents on two aromatic rings. Chalcones are well studied for their mesomorphic properties. Compared to a large number of chalcone based LCs reported, only a few articles have been published on the mesomorphic properties of bis-chalcone compounds. The target compounds of the present study varied not only in their central core but also in number and position of terminal aliphatic chain substitutiona key structural unit in deciding the liquid crystalline properties of a compound. Method: All target compounds were synthesized in good yield by base catalyzed Claisen-Schmidt condensation reaction. Molecular structures were confirmed by FT-IR, 1H NMR, 13C NMR, and mass spectroscopic methods. Liquid crystalline property of these compounds was evaluated using polarizing optical microscopy and differential scanning calorimetry. Results: Although none of the acetone based compounds exhibited mesomorphism, cyclopentanone and cyclohexanone based compounds with octyloxy chain at para position on either side of the dibenzylidine ring stabilized liquid crystalline smectic (SmA and SmC) and nematic (N) phases. The observed structure-liquid crystalline property relationship was explained by structural analysis of molecules using DFT calculations. Considering the inherent photoluminescence nature of the chalcone moiety, a preliminary study was carried out on a selected compound to reveal its fluorescence property. Conclusion: Our study brings about an important structure-liquid crystalline property relationship in a relatively unexplored class of bis-chalcone liquid crystals.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3