Performance Assessment of Composite Phase Change Materials for Thermal Energy Storage-Characterization and Simulation Studies

Author:

Chavan Santosh1,Gumtapure Veershetty2,Perumal D. Arumuga2ORCID

Affiliation:

1. Department of Mechanical Engineering, Bule Hora University, Bule Hora,Ethiopia

2. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore -575025,India

Abstract

Background: The present study mainly focuses on the development of new Thermal Storage Materials (TSM) and compare the performance for thermal energy storage capacity. Linear Low- Density Polyethylene (LLDPE) based Composite Phase Change Materials (CPCMs) is prepared, and its properties are analyzed using characterization, analytical calculations, and numerical simulation methods. The composites are prepared by blending the functionalized graphene nanoparticles (1, 3 & 5%) with three different concentrations into LLDPE. All three CPCMs show enhanced thermal performance compared to the base material, but it is noticed that higher concentrations of nanoparticles increase the dynamic viscosity and produce an adverse effect on thermal performance. Thermal characterization shows improved latent heat capacity with nanoparticle concentration, analytical and numerical results also compared, which shown a difference of 10 to 25%. Objective: The purpose of this study is the development and evaluation of the thermal storage capacity of different thermal storage materials and enlighten the techniques used for characterizing the storage materials. Methods: Composite material preparation is carried out by using twin-screw extruders, characterization of developed material is done through FTIR, SEM, and DSC analysis. For complete analysis characterization, analytical calculations and numerical simulation methods are used. Results: Linear low-density polyethylene-based composite materials can be successfully developed using a twin-screw extruder. This extrusion provided proper dispersion of nanoparticles into the base material, and it is validated by SEM analysis. DSC analysis confirmed the enhancement in the thermophysical properties of composite materials. Conclusion: The latent heat capacity increased around 20% during the heating cycle and reduced approximately 23% during the cooling cycle for base material and 5% addition of nanoparticle, respectively. The comprehensive study accomplishes that the optimum concentration of nanoparticle provides better thermal performance for thermal energy storage applications.

Publisher

Bentham Science Publishers Ltd.

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3