Review of Vehicle Active Safety Systems and Their Coordinated Control

Author:

Zhao Zixiang1ORCID,Fan Xiaobin1ORCID

Affiliation:

1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000,China

Abstract

Background: It is obvious that the safety concern associated with a vehicle is greatly valued by all, whether it is now or in the future, the automobile safety issue is the hotspot and the focus of the research by experts and scholars. The continuous increase in car ownership brings convenience to people's life and also poses a threat to people's life and property. Vehicles’ active safety system is the hotspot of current research and development, which plays an important role in automobile safety. Firstly, the vehicle’s active safety technology and its development are introduced. Then, a review is carried out examining the Anti-Lock Brake System (ABS), the Electronic Brake force Distribution (EBD/CBC), the Brake Assist System (BAS/EBA/BA), the Traction Control System (TCS/ASR), the Vehicle Stability Control (VSC/ESP/DSC), etc. At present, there are many patents on the control of each subsystem, but few patents on the integrated control for the active safety of vehicles. Objective: The main contents of this paper are as follows: the control strategies and methods of different active safety systems, the strategies to improve the stability of a vehicle control system and ensure the effectiveness of active safety system control. It provides a reference for the development of active safety control technology and patent. Methods: Through the analysis of different control algorithms and control strategies of Anti-lock and braking force distribution systems, it is pointed out that the switching of EBD/ABS coordinated control strategy according to slip rate can make full use of slip rate and road adhesion coefficient to improve the safety of the system. For the BAS, the slip problem is solved through the combination of the Mechanical Assistant Braking System (MABS) and Electronic Braking Assistant (EBA) system by measuring the distance and the speed of the vehicle ahead. The optimal slip rate control is realized by different control algorithms and control strategies of the traction control system. It is pointed out that the adaptive fuzzy neural controller should be used to control the yaw angular velocity and centroid side angle of the Electronic Stability Program (ESP), which has a good effect on maintaining vehicle stability. A sliding mode variable structure controller combined with constant speed control and law control is used to control the yaw moment. Results: Through the coordinated control strategy of EBD/ABS, the slip rate and road adhesion coefficient were fully utilized by switching according to the slip rate. The problem of the sliding slope was solved by MABS with EBA system. The ESP should use an adaptive fuzzy neural controller to control the yaw angular velocity and centroid side angle, and adopt the joint sliding mode variable structure controller which combines the ABS control and the yaw moment control. Through the optimal control theory, the coordinated control of each subsystem can significantly improve driving stability, riding comfort, fuel economy and so on. Conclusion: This study adopts different control strategies and control algorithms for different active safety control systems and makes full use of the tire-road friction coefficient and slip ratio optimal slip ratio. These focus on accurate control of control variables such as yawing angular velocity, centroid side-slip angle, yawing moment and finally ensure the vehicle braking stability, robustness of the controller and the lateral stability of the vehicle.

Funder

National Undergraduate Training Program for Innovation and Entrepreneurship

Natural Science Foundation of Henan Province of China

Key Scientific Technological and Project of Henan Province

Key Scientific Research Project of Henan Province

Publisher

Bentham Science Publishers Ltd.

Subject

General Materials Science

Reference119 articles.

1. Tan Z.F.; Liu Y.C.; Analysis on the impact of human behavior on road traffic safety. Forestry Construction 2005,1,30-33

2. Wang M.; Wang C.J.; The present situation and analysis of traffic safety of vulnerable traffic participants in China. Road Traffic and Safety 2010,10(4),9-14

3. Zhang Y.B.; Lu H.P.; Liu Q.; China’s road traffic safety situation and countermeasures. Changsha Institute of Transportation 2006,3,58-62

4. Gasmi A.; Boudali M-T.; Orjuela R.; Basset M.; Multi-criteria stability combination for yaw stability control of autonomous vehicles. IFAC-Papers OnLine 2019 2019,52(5),465-470

5. Ma X.; Wong P.K.; Zhao J.; Xie X.; Cornering stability control for vehicles with active front steering system using T-S fuzzy based sliding mode control strategy. Mech Syst Signal Process 2019,125(15),347-364

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3