Research on PID Neural Network Decoupling Control Among Joints of Hydraulic Quadruped Robot

Author:

Gao Bingwei1,Ye Yongtai1,Han Guihua1

Affiliation:

1. College of Mechanical and Power Engineering, Harbin University of Science and Technology, Xuefu Road, Harbin 15080, Heilongjiang Province, China

Abstract

Background: Hydraulic quadruped robot is a representative of the redundant transmission. This is a great challenge for multi-joints coordinated movement of the robot, because of the movement coupling with several freedom degrees among kinematic chains. Therefore, there is an urgent need to realize the decoupling among the joints of the hydraulic quadruped robot. Objective: The purpose of this study is to provide an overview of controller design from many studies and patents, and propose a novel controller to realize the decoupling control among joints of a hydraulic quadruped robot. Methods: For the coupling problems between the thigh and calf of a hydraulic quadruped robot, based on the Lagrangian method, dynamics model of the robot’s leg is established. The influence of driven system is considered. The model of the hydraulic servo driven system is built, so as to obtain the coupling relationship between thigh and calf of hydraulic quadruped robot. Based on the multivariable decoupling theory, a PID neural network decoupling controller is designed. Results: The researches on experiments are executed. The PID neural network decoupling control method is compared with the control that does not use any decoupling method. The decoupling effect of the proposed algorithm is verified on the thigh and the calf of the hydraulic quadruped robot. Conclusion: The designed PID neural network decoupling control method reduces the crosscoupling between thigh and calf of the hydraulic quadruped robot, and has obvious effect to improve the dynamic characteristics of single joint of robot's leg.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Bentham Science Publishers Ltd.

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Control of Quadruped Robots using Reinforcement Learning and Depth Completion Network;Proceedings of the Workshop on Adaptive AIoT Systems;2024-06-03

2. Research on decoupling control of single leg joints of hydraulic quadruped robot;Robotic Intelligence and Automation;2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3