Analytical Modeling on Vibration Analysis of Cracked Functionally Graded Plate Submerged in Fluid

Author:

Soni Shashank1,Jain Nitin K.1,Joshi Prasad V.2

Affiliation:

1. Mechanical Engineering Department, National Institute of Technology, C.G., Raipur 492001, India

2. Department of Basic Sciences and Engineering, Indian Institute of Information Technology, Nagpur 440006, Maharashtra, India

Abstract

Background: It is established that the vibration response of submerged structures is quite different than that calculated in vacuum. Therefore, the study of vibration characteristics of submerged plate structures is important for safety and its designing purpose. Objective: To investigate the fundamental frequency of partially cracked Functionally Graded (FG) submerged plate based on analytical approach. Methods: The governing differential equation of the cracked-submerged plate is derived based on Kirchhoff’s thin classical plate theory in conjunction with the potential flow theory. The line spring model is used to incorporate the effect of crack in the form of additional bending whereas the effect of fluid medium is incorporated in form fluids forces associated with inertial effects of its surrounding fluids. The Bernoulli’s equation and velocity potential function are used to define the fluid forces acting on plate surface. Results: An approximate solution for governing equation of coupled fluid-plate system is obtained by using the Galerkin’s method. For validation of the present results, they are compared with the existing results of the previous published work, which are in good agreements. New results for natural frequencies as affected by gradient index, crack length, level of submergence and immersed depth of plate are presented for Simply Supported (SSSS) boundary condition. Conclusion: It has been concluded that the presence of crack and fluidic medium significantly affect the natural frequencies of the plate. It is observed that the increase in the length of crack and level of submergence decreases the fundamental frequency. In this paper, few patents have been discussed.

Publisher

Bentham Science Publishers Ltd.

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3