Heat Treatment of High Manganese Austenitic Steel: Structural and Mechanical Properties

Author:

Lenda Omar Ben1,M’ghari Oumayma12,Ibnlfassi Amina3,Yassine Youssef Ait45,Ahmed Youssef Ait2,Saad El Madani12

Affiliation:

1. Laboratory of Physical Chemistry of Processes and Materials, Faculty of Science and Technology, University Hassan 1er, Settat, Morocco

2. Laboratory of Health Sciences and Technologies, Institut Supérieur des Sciences de la Santé, University Hassan 1er, Settat, Morocco

3. Laboratory of Engineering, Industrial Management and Innovation, Faculty of Science and Technology, University Hassan 1er, Settat, Morocco

4. École Supérieur de Technologie, University Ibn Zohr, Laâyoune, Morocco

5. Laboratory of Thermodynamics and Energetics, Faculty of Sciences, University Ibn Zohr, Agadir, Morocco

Abstract

Background: Technological progress is based on the development of different types of materials. Among the materials most solicited, we mention metals and alloys. The development of these materials has been initiated and resulted in a wide range of metallic materials, including austenitic manganese, constituting, until today, a center of interest for various research works given their wide use in the industry as well as the recent progress by observation and characterization instruments. Objective: The aim of the paper is to investigate the heat treatment conditions of high manganese austenitic steel and to determine their influence on the structure and mechanical properties. Methods: The samples were subjected to an austenitization treatment at five different temperatures: 980 °C, 1000 °C, 1020 °C, 1040 °C, and 1060 °C for 1 hour. The experimental techniques used are hardness, nanoindentation tests, optical microscopy and X-ray diffraction. Hardness and microhardness measurements were performed to determine the wear behavior of the studied steels. Result: The results indicated that the temperature affects the microstructure; by increasing the austenitizing temperature with pronounced growth of the austenite as well as the dissolution of carbides M7C3, the nano hardness and the modulus of elasticity decreases considerably. Conclusion: The heat treatment of materials modifying the microstructure is closely related to the mechanical behavior of the austenitic manganese steel. Therefore, the control of structural changes by heat treatment is essential to obtain the desired properties. The established heat treatment conditions of the obtained steel can be suitable for several industrial applications.

Publisher

Bentham Science Publishers Ltd.

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3