Influence of Tooth Surface Wear and Nonlinear Contact Stiffness on Dynamic Responses of Helical Gears

Author:

Han Lin1,Li Weiguang1,Qi Yang1,Liu Shaoshuai1

Affiliation:

1. Department of Mechanical Engineering, Tianjin Key Laboratory of High Speed Cutting & Precision Machining, Tianjin University of Technology and Education, Tianjin 300222, China

Abstract

Background: Tooth surface wear is inevitable in helical geared transmission. Consequently, the worn profile deviates from the ideal involute one. As a result, the structural stiffness of worn tooth and contact stiffness of tooth-pair are both changed. Methods: This work presents an improved calculation method for structural stiffness of worn teeth by combining slicing and potential energy method, considering non-uniform distribution of wear amount along the tooth surface. Then, a nonlinear contact stiffness model is employed to investigate the influence of wear on contact stiffness. Meanwhile, taking wear as one kind of profile deviation, the analytical model of time-varying mesh stiffness (TVMS) of helical gear pair is derived. Furthermore, governing equations with 6 degree-of-freedom are established and influences of wear on dynamic responses are revealed. Results: Results indicate that structural stiffness of worn teeth decreases but contact stiffness does not always keep increasing or decreasing. The fluctuation of dynamic transmission error with the nonlinear contact model is not as significant as that from the constant contact stiffness model. Conclusion: The approach presented in this work is suitable for condition monitoring of helical gears in view of long-term service

Funder

Natural Science Foundation of China

Natural Science Foundation of Tianjin

Tianjin Enterprise Science and Technology Commissioner Project

Scientific Research Foundation of Tianjin University of Technology and Education

Tianjin University Science and Technology Development Fund Project

Publisher

Bentham Science Publishers Ltd.

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3