Computational Approach on Acoustic and Flow Performances of a Combined Resistive and Reactive Muffler

Author:

Ubaidillah U.1,Choi Seung-Bok2,Sinaga Farlian Rizky1,Yahya Iwan3ORCID,Aziz Siti Aishah Abdul4,Yunus Nurul Azhani5

Affiliation:

1. Mechanical Engineering Department, Universitas Sebelas Maret, Surakarta 57126, Indonesia

2. Department of Mechanical Engineering, The State of New York at Korea (SUNY Korea), Incheon 21985, South Korea

3. Department of Physics, Universitas Sebelas Maret, Surakarta 57126, Indonesia

4. Engineering Materials and Structures (eMast), Malaysia Japan Internatinal Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia

5. Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia

Abstract

Aim: The internal combustion engine (ICE) based vehicles must follow strict regulations regarding noise levels, especially in the racing competition. The noise level is typically gauged as per two different scenarios: stationary engine revolution and maximum achievable revolution. One cannot reach the required noise level by deploying just reactive or resistive muffler type separately. This research recommends a novel mix of reactive and resistive mufflers in a single package solution. For assessing the noise level, three different types of mufflers are devised and studied by means of a computational approach. The new exhaust design in this study becomes a novelty of the proposed article. In analyzing the acoustic capability of the muffler, up to now it has not been able to dampen in various frequency ranges. Method: In this paper, the author wants to perform a computational analysis of 3 muffler models that combine several methods of attenuation that are effective at different specific frequency ranges with different configurations in order to obtain a good combined attenuation capability in various frequency ranges. Muffler 1 uses simple reactive and dissipative techniques like standard mufflers, while muffler 2 combines the dissipative technique with a Helmholtz resonator acting as the reactive part. Muffler 3 has a multi-chamber system that uses a combination of several advanced techniques. The three mufflers are evaluated on the basis of their capacity to decrease noise level. This noise level is assessed by considering both transmission and insertion loss through mathematical calculations in the frequency range of 200 Hz to 6400 Hz with the help of pressure acoustic, frequency domain (ACPR) simulation. Apart from noise evaluation, this study also examines flow parameters to estimate the pressure drop for the proposed muffler. Result: Comsol simulation provided both insertion loss (IL) and transmission loss (TL) with different trends. Muffler 3 had broadband response compared to its counterparts. Verifiying the finite element simulation results, electroacoustic models of each muffler were simulated using Matlab Simulink to get frequency response. Both finite element and electroacoustic modeling results have a good agreement. Pressure distribution of each model was also evaluated in terms of isosurface total pressure. Conclusion: It is demonstrated that the proposed muffler having a multi-chamber setup provides the best performances showing both superior and consistent noise reduction throughout the 200-6400 Hz frequency range and good airflow that does not create backpressure due to noise suppression efforts.

Publisher

Bentham Science Publishers Ltd.

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3