Synthesis, Characterization, Antiproliferative Activity of Galloyl Derivatives and Investigation of Cytotoxic Properties in HepG2/C3A cells
-
Published:2021-12-17
Issue:
Volume:23
Page:
-
ISSN:1389-2010
-
Container-title:Current Pharmaceutical Biotechnology
-
language:en
-
Short-container-title:CPB
Author:
dos Santos Rafael Claudino1, de Freitas Raquel Oliveira Nascimento2, Foglio Mary Ann3, de Carvalho João Ernesto3, Ruiz Ana Lucia Tasca Góes3, Pessatto Lucas Roberto4, Oliveira Rodrigo Juliano5, Baranoski Adrivanio4, Biazi Bruna Isabela4, Mantovani Mário Sérgio4, Kassuya Candida Aparecida Leite1, de Oliveira Junior Pedro Cruz6, Formagio Anelise Samara Nazari1
Affiliation:
1. Faculty of Health Science, Federal University of Grande Dourados - UFGD, Dourados, Mato Grosso do Sul State, Brazil 2. Industrial chemistry course, State University of Mato Grosso do Sul – UEMS, Dourados, Mato Grosso do Sul State, Brazil 3. Faculty of Pharmaceutical Science, State University of Campinas – UNICAMP, Campinas, São Paulo State, Brazil dBiological Science Center, State University of Londrina – UEL, Londrina, Paraná State, Brazil 4. Graduate Program in Genetics and Molecular Biology, State University of Londrina – UEL, Londrina, Paraná State, Brazil 5. Faculty of Medicine, Federal University of Mato Grosso do Sul – UFMS, Campo Grande, Mato Grosso do Sul State, Brazil 6. Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados - UFGD, Dourados, Mato Grosso do Sul State, Brazil
Abstract
Background:
Appropriate substituents in the galloyl group could lead to significant biological properties.
Objective:
Novel galloyl-substituted compounds bearing 2-substituted-1,3,4-oxadiazol-5-yl, 5-substituted-1,2,4-triazol-3-yl, and carboxamide groups were synthesized and evaluated for their antiproliferative activity. Additionally, galloyl hydrazide (2) was evaluated by performing cytotoxicity, membrane integrity, cell cycle, and apoptosis assays in HepG2/C3A cells. Method: General procedure was used for the synthesis of galloyl-substituted (3-9, 11) and characterized by their spectroscopic data (1H and 13C NMR). The antiproliferative activity of all novel galloyl derivatives was evaluated against nine human tumors and one nontumoral cell line. Three response parameters (GI50, TGI, and LC50) were calculated. The cytotoxicity test was performed for the resazurin assay. The membrane integrity, cell cycle, and apoptosis assays were performed by flow cytometry.
Results:
The substitution of the methoxy group of the galloyl ring system for a carboxamide group (3, 4, 5, and 6) produced compounds with moderate antitumoral activity, particularly 6, against six human cancer cell lines, K-562, PC-3, NCI-ADR/RES, OVCAR, 786-0 and NCI-H460, with GI50 values ≤ 9.45 µg/mL. Triazole derivatives 7 and 8 exhibited higher antitumoral activity toward OVCAR, MCF-7 and leukemia K-562 cell lines, exhibiting GI50 values less than 10 µg/mL. Compound 11 displayed significant activity against PC-3 (GI50 = 4.31 µg/mL), OVCAR (GI50 = 8.84 µg/mL) and K-562 (GI50 = 8.80 µg/mL) cell lines. Galloyl hydrazide (2) had cytotoxic activity in HepG2/C3A cells (IC50 = 153.7 µg/mL). In membrane permeability, cell count, cell cycle, and apoptosis assays, as determined using the IC50 of compound (2) in HepG2/C3A cells, increased membrane permeability, decreased cell count, altered cell cycle, and initial apoptosis was observed compared to the control group.
Conclusion:
Thus, our results showed for the first time the synthesis, antiproliferative activity, and cytotoxicity of galloyl-substituted compounds. Galloyl-substitution does not have a very strong synergistic effect in the inhibition of cancer cell proliferation compared with galloyl hydrazide (2). Compound 2 demonstrated promising activity in HepG2/C3A hepatocarcinoma cells.
Publisher
Bentham Science Publishers Ltd.
Subject
Pharmaceutical Science,Biotechnology
|
|