Saponins from the Sea Cucumber Promote the Osteoblast Differentiation in MC3T3-E1 Cells through the Activation of the BMP2/ Smads Pathway

Author:

Li Zhuo1ORCID,Tian Yingying2,Ma Hongge3,Wang Meiling1,Yan Ziyi1,Xue Changhu1,Wang Jingfeng1

Affiliation:

1. College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China

2. Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong Province, China

3. Qingdao Second Middle School, Shandong Province, China

Abstract

Background: Several studies have shown that plant saponins promoted osteoblast differentiation and improved osteoporosis. In the current study, Sea Cucumber Saponin (SCS) with a purity of 80% was extracted from Filipino sea cucumber, with a similar structure to plant saponins. Objective: This study aims to investigate the effects of SCS on bone formation in vitro and ex vivo. Results: SCS significantly promoted osteogenic differentiation and mineralization of MC3T3-E1 cells, as well as new osteoid formation in neonatal mouse calvarias ex vivo. qRT-PCR results indicated that SCS markedly down-regulated the expression of C/EBPα* and PPARγ at the levels of transcription, which demonstrate that SCS inhibits the trans-differentiation of MC3T3-E1 cells to an adipocytic phenotype. Moreover, further studies revealed that SCS increased the expression levels of Runx2 and OSX. The mechanism revealed that SCS induced the expression of BMP2 and p-Smad1/5, which indicated that SCS facilitated osteogenesis via activating the BMP2/Smads signaling pathway. Conclusion: SCS promoted osteogenic differentiation of pre-osteoblasts by activating the BMP2/ Smads molecular pathway, providing a theoretical basis for the development of sea cucumber saponins for the treatment to bone loss diseases such as osteoporosis.

Funder

National Key Research & Development Program of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3