Enhancing the Antibacterial Activity of Erythromycin with Titanium Dioxide Nanoparticles against MRSA

Author:

Ullah Kaleem1,Khan Shujaat A.1,Mannan Abdul1,Khan Romana2,Murtaza Ghulam3ORCID,Yameen Muhammad A.1

Affiliation:

1. Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan

2. Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan

3. Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54000, Pakistan

Abstract

Background: Staphylococcus aureus (S. aureus) is the most common infectious agent in the community and hospitals. Infections with S. aureus are now becoming difficult to be treated by using conventional antibiotics due to its emerging methicillin-resistant S. aureus (MRSA) strain. Objective: In the present study, MRSA was isolated from clinical samples and evaluated for resistance against different antibiotics, TiO2 nanoparticles, and their combinations. Methods: Clinical samples were collected from Ayub Medical Complex (AMC), Abbottabad, Pakistan, and identified by different biochemical tests and polymerase chain reactions (PCR). Kirby-Bauer disk diffusion method was performed to evaluate antimicrobial susceptibility. Minimum Inhibitory Concentration (MIC) of ampicillin, ciprofloxacin, erythromycin, and vancomycin was found out by agar dilution method while the broth dilution method was used for the MIC of TiO2 nanoparticles and their combinations with erythromycin. Results: All 13/100 (13%) MRSA were successfully identified. All isolates were susceptible to quinupristin/ dalfopristin, teicoplanin, and vancomycin, while the highest resistance was seen with erythromycin, penicillin, and tetracycline. MIC showed high resistance against ampicillin (0.25-512 mg/L) and erythromycin (0.25-1024 mg/L). Conclusion: The MIC value of 2 mM TiO2 nanoparticles was found to be the most effective concentration after 12 h of incubation, while the combination of erythromycin with 3 mM TiO2 nanoparticles was found to be more potent which significantly lowered down the MIC of erythromycin to 2-16 mg/L.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3