Targeted Photodynamic Therapy (PDT) of Lung Cancer with Biotinylated Silicon (IV) Phthalocyanine

Author:

Dong Wenyi1,Li Ke1ORCID,Wang Shijie1,Qiu Ling1,Liu Qingzhu1,Xie Minhao1,Lin Jianguo1

Affiliation:

1. NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063,China

Abstract

Background: Lung cancer is the leading cause of cancer-associated mortality in the world. Traditional cancer therapies prolong the life expectancy of patients but often suffer from adverse reactions. Photodynamic Therapy (PDT) has been recommended as a treatment option for lung cancer in several countries, due to its non-invasive procedures, high selectivity and weak side effects. Objective: We have designed and synthesized a biotin receptor-targeted silicon phthalocyanine (IV) (compound 1) which showed a good therapeutic effect on biotin receptor-positive tumors. Since the overexpression of Biotin Receptor (BR) is also present in human lung cancer cells (A549), we explored the therapeutic properties of compound 1 on A549 xenograft tumor models. Methods: The selectivity of compound 1 toward A549 cells was studied with a fluorescence microscope and IVIS Spectrum Imaging System. The cytotoxicity was measured using the MTT assay. In vivo anti-tumor activity was investigated on the nude mice bearing A549 xenografts. Results: In vitro assays proved that compound 1 could selectively accumulate in A549 cells via the BR-mediated internalization. In vivo imaging and distribution experiments showed that compound 1 could selectively accumulate in tumor tissues of tumor-bearing mice. After 16 days of the treatment, the volumes of tumor in the PDT group were obviously smaller than that in other groups. Conclusion: This study demonstrates that compound 1 is a promising photosensitizer and has broad application prospects in clinical PDT of lung cancers.

Funder

Jiangsu Provincial Medical Youth Talent

333 Project of Jiangsu Province

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3