Analysis of the Clinical Diagnostic Value of GMFB in Cerebral Infarction

Author:

Yuan Zhaohu1ORCID,Yu Zhiwu2ORCID,Zhang Yiyu1,Yang Huikuan1ORCID

Affiliation:

1. Department of Blood Transfusion, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong, China

2. Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China

Abstract

Background: Glial Maturation Factor Beta (GMFB) is a highly conserved brain-enriched protein implicated in immunoregulation, neuroplasticity and apoptosis, processes central to neural injury and repair following cerebral ischaemia. Therefore, we examined if changes in neurocellular GMFB expression and release can be used to assess brain injury following ischaemia. Methods and Results: Immunofluorescence staining, Western blotting, immunohistochemistry and ELISA were used to measure GMFB in cultured neurons and astrocytes, rat brain tissues and plasma samples from stroke model rats and stroke patients, while cell viability assays, TTC staining and micro- PET were used to assess neural cell death and infarct severity. Immunofluorescence and immunohistochemistry revealed GMFB expression mainly in astrocyte and neuronal nuclei but also in neuronal axons and dendrites. Free GMFB concentration increased progressively in the culture medium during hypoxia-hypoglycaemia treatment. Plasma GMFB concentration increased in rats subjected to middle cerebral artery occlusion (MCAO, a model of stroke-reperfusion) and in stroke patients. Plasma GMFB in MCAO model rats was strongly correlated with infarct size (R2=0.9582). Plasma GMFB concentration was also markedly elevated in stroke patients within 24 h of onset and remained elevated for more than one week. Conversely, plasma GMFB elevations were not significant in myocardial infarct patients and stroke patients without infarction. Conclusion: GMFB has the prerequisite stability, expression specificity and response dynamics to serve as a reliable indicator of ischaemic injury in animal models and stroke patients. Plasma GMFB may be a convenient non-invasive adjunct to neuroimaging for stroke diagnosis and prognosis.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3