Theoretical Investigation of Design Space for Multi Layer Drug Eluting Bioresorbable Suture Threads

Author:

Casalini Tommaso1,Rossi Filippo2,Brizielli Luisa1,Perale Giuseppe1

Affiliation:

1. Institute of Mechanical Engineering and Material Engineering, Department of Innovative Technologies, SUPSI, 6928 Manno, Switzerland

2. Department of Chemistry, Materials and Chemical Engineering , Italy

Abstract

Background: The work presented here is focused on the development of a comprehensive theoretical model for the description of drug release from a double - layer bioresorbable suture thread and the therapeutic efficacy of the active compounds delivered in the surrounding tissue. Methods: In particular, the system under investigation is composed of a core of slow-degrading polylactic- acid-co-ε-caprolactone (PLCL), where an antibiotic compound (Vancomycin) is loaded, surrounded by a shell of a fast-degrading polylactic-co-glycolic acid (PLGA) which contains an anesthetic drug (Lidocaine hydrochloride) for the post-surgical pain relief. Results: This system is of potential interest for the combined effects provided by the different active molecules, but the different release and polymer degradation dynamics, as well as their mutual influence, do not allow an intuitive a priori evaluation of device behavior, which can be rationalized through mathematical modeling. The model takes into account the main involved phenomena (polymer degradation and diffusion of the drugs within the device and the tissue, where they are metabolized) and their synergic effects on the overall system behavior. Conclusion: Model results are discussed in order to quantify the impact of the main design parameters on device performances, thanks to the use of phase diagrams (which show drug effect in time and space) whose insights are summarized in order to determine a design space according to the specific needs.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3