The Production and Analysis of Biodegradable Polymers of Type of Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHA) by Pseudomonas putida Strain for the Biomedical Engineering

Author:

Ene Nicoleta1ORCID,Vladu Mariana-Gratiela1ORCID,Lupescu Irina2ORCID,Ionescu Ana-Despina2ORCID,Vamanu Emanuel1ORCID

Affiliation:

1. Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania

2. National Institute for Chemical Pharmaceutical Research and Development-ICCF, Vitan Avenue 112, 031299 Bucharest, Romania

Abstract

Background: Polyhydroxyalkanoates (PHAs) are bacteria-synthetized biopolymers under unbalanced growth conditions. These biopolymers are considered potential biomaterials for future applications for their biocompatibility and biodegradable features and potential biomaterials for future applications for their biocompatibility and biodegradable characteristics and their ability to be quickly produced and functionalize with strong mechanical resistance. This article is intended to perform microbial fermentation using Pseudomonas putida strain to show the amount of biopolymers of the type polyhydroxyalkanoates with medium-chain-length (mcl-PHA) obtained depending on the type and quantity of added precursors (glucose and fatty acids). Methods: It is important to understand the microbial interaction and mechanism involved in PHA biosynthetis.For these, several methods were used, such as: obtaining microbial biomass by using a Pseudomonas putida strain able of PHA-producing, analysis of biopolymer production by acetone extraction following the Soxhlet method, purification of biopolymer by methanol-ethanol treatment, followed by the estimation of biomass by spectrophotometric analysis and the measurement of the dry weight of cells and the quantification of the amount of biopolymer produced following the gas chromatographic method (GC). Results: The highest PHA yield was obtained using octanoic (17 mL in 2000 mL medium) and hexanoic acids (14 mL in 2000 mL medium) as precursors. Consequently, octanoic acid – octanoic acid, heptanoic acid – nonanoic acid, and octanoic acid - hexanoic acid were the mix of precursors that supported the amount of PHA obtained. Conclusion: Of the 4 types of structurally related substrate, the strain Pseudomonas putida ICCF 319 prefers the C8 sublayer for an elastomeric PHA's biosynthesis with a composition in which the C8 monomer predominates over C6 and C10.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3