Evaluation of Decontamination Efficacy of Electrolytically Generated Hypochlorous Acid for the Vesicating Agent: A Multimodel Study

Author:

Sharma Ajay Kumar1ORCID,Shukla Sandeep Kumar2ORCID,Kalonia Aman2ORCID,Shaw Priyanka1ORCID,Khanna Kushagra1ORCID,Yashavarddhan M. H.3ORCID,Gupta Richa4ORCID,Bhatnagar Aseem1ORCID

Affiliation:

1. Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054, India

2. Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054,India

3. Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054, India

4. Graphic Era Deemed to be University, Dehradun, India

Abstract

Background: Sulfur Mustard is a strong vesicant and chemical warfare agent that imposes toxicity to the lungs, eyes, and skin after accidental or intended exposure. Objectives: The current study was intended to explore in vitro and in vivo decontamination properties of electrolytically generated HOCl (hypochlorous acid) against CEES (2-chloroethyle ethyle sulphide), a known sulfur mustard simulant & vesicating agent. Methods: In vitro studies were carried out using UV spectroscopy and GC-MS methods. In vivo studies were perfomred in Strain A and immune compromised mice by subcutaneous as well as prophylactic topical administrion of HOCl pretreated CEES. The blister formation and mortality were considered as end-point. Histopathological study was conducted on skin samples by H & E method. DNA damage studies measuring γ-H2AX and ATM has been carried out in human blood using flow cytometry. Anti-bacterial action was tested by employing broth micro dilution methods. Comparative study was also carried out with known oxidizing agents. Results: The topical application of pre-treated CEES at 5, 30 min and 1 h time points showed significant (p<0.001) inhibition of blister formation. DNA damage study showed reduced mean flourences intensity of DSBs nearly 17-20 times, suggesting that HOCl plays a protective role against DNA damage. Histopathology showed no sign of necrosis in the epidermis upto 5 min although moderate changes were observed at 30 min. Pretreated samples were analyzed for detection of reaction products with m/z value of 75.04, 69.08, 83.93, 85.95, 123.99, 126.00, and 108.97. HOCl showed strong bactericidal effect at 40 ppm. The absorbance spectra of HOCl treated CEES showed lowered peaks in comparison to CEES alone and other oxidizing agents Conclusion: In a nutshell, our results signify the decontamination role of HOCl for biological surface application.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3