Rational design and evaluation of the recombinant multiepitope protein for serodiagnosis of rubella

Author:

Souza Marilen1,Machado Juliana2,da Silva Jonatas2,Ramos Luana2,Nogueira Lais2,Ribeiro Patrícia2,Dias Daniel2,Santos Josiane2,Santos José Carlos1,Nóbrega Yanna3,Souza Amanda4,Freitas Sonia4,da Paz Mariana Campos5,Felipe Maria1,Torres Fernando1,Galdino Alexsandro2

Affiliation:

1. Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF, Brazil

2. Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG, Brazil

3. Laboratório de Doenças Imunogenéticase Crônico-degenerativas, Faculdade de Saúde, Departamento de Ciências Farmacêuticas, Universidade de Brasília, Brazil

4. Laboratório de Biofísica, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brazil

5. Laboratório de Nanobiotecnologia & Biativos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, Divinópolis, MG, 35501-296, Brazil

Abstract

Background: Rubella is an infection caused by rubella virus (RV) and is generally regarded as a mild childhood disease. The disease continues to be of public health importance mainly because when the infection is acquired during early pregnancy it often results in fetal abnormalities, which are classified as congenital rubella syndrome (CRS). An accurate diagnosis for rubella is thus of pivotal importance for proper treatment. Objective: To produce a recombinant multiepitope protein (rMERUB) for the diagnosis of rubella, based on conserved immunodominant epitopes of glycoprotein E1 and E2. Methods: A synthetic gene was designed and cloned into vector pET21a with a 6xHis tag at the C-terminal for affinity purification and overexpressed in Escherichia coli cells. Biophysical analysis of rMERUB was performed by circular dichroism. Biological activity was assessed using an in-house ELISA assay. Results : Expression in Escherichia coli showed a ~22 kDa protein that was purified and used to perform structural assays and an IgG ELISA. Structural analyses reveal rMERUB has a β leaf pattern that promotes the exposure of epitopes, thus allowing antibody recognition. Evaluation of 33 samples (22=positive; 11=negative) was performed using in-house ELISA and this was compared with a commercial kit. The sensitivity was 100% (95% CI: 85-100) and specificity 90.91% (95% CI: 62-99). Excellent agreement (Kappa index = 0.9) was obtained between ELISA assays. Conclusions: The careful choice of epitopes and the high epitope density, coupled with simple-step purification, pinpoints rMERUB as a promising alternative for rubella diagnosis, with potential for the development of a diagnostic kit.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meet the Editorial Board Member;Recent Patents on Biotechnology;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3