The Effect of Pre-operative Autologous Blood Donation on Bone Marrow Hematopoietic Functions in Rabbits after Hepatectomy

Author:

Zhou Xiao-Fang1ORCID,Liu Yang1,Xu Jia-Ming1ORCID,Wang Jin-Huo1ORCID,Li Zhen-Zhou2ORCID,Zhou Xun1,Guo Jian-Rong1

Affiliation:

1. Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135, P.R. China

2. Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area, Training Base, Shanghai 200135, P.R. China

Abstract

Background: Pre-operative autologous blood donation (PABD) is one of the most widely distributed autologous blood donation means, which has positive effects on erythropoiesis. However, whether PABD can stimulate the bone marrow hematopoiesis after hepatectomy has not been reported. Methods: Totally 80 New Zealand rabbits were randomly divided into 4 groups that included control group, surgery group, hemodilutional autotransfusion (HA) group and PABD group. Automatic reticulocyte examination was performed to detect the content of reticulocyte and immature reticulocyte fractions (IRF). Flow cytometric analysis was employed to monitor the level of CD34+ cells and the cell cycle status. Southern blotting was conducted to determine the telomere length of CD34+ cells. Results: The content of high fluorescence reticulocytes (HFR) and IRF was decreased at 6 h and 24 h after autotransfusion. However, the level of CD34+ cells was upregulated after PABD. Cell cycle status analysis revealed that the majority of the CD34+ cells in HA and PABD group were maintained in G0/G1 phase. The telomere length in HA and PABD group was shortened than that of the control group and surgery group. Conclusion: PABD could promote the bone marrow hematopoietic functions in rabbits after hepatectomy via stimulating proliferation of CD34+ cells and shortening the telomere length of CD34+ cells, but the content of HFR was not increased immediately because of the stuck of CD34+ cells in the G0/G1 phase.

Funder

Key Disciplines Group Construction Project of Pudong Health Bureau of Shanghai

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3