A New Risk Model based on the Machine Learning Approach for Prediction of Mortality in the Respiratory Intensive Care Unit

Author:

Yan Peng12,Huang Siwan34,Li Ye3,Chen Tiange3,Li Xiang3,Zhang Yuan3,Wu Huan5,Xu Jianqiao1,Xie Guotong367,Xie Lixin1,Mo Guoxin1

Affiliation:

1. College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100853, China

2. Department of Pulmonary & Critical Care Medicine, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, 100000, China

3. Ping An Healthcare Technology, Beijing, 100027, China

4. Huaneng Clean Energy Research Institute, Beijing 102209, China

5. Medical Big Data Central, Chinese PLA General Hospital, Beijing, 100853, China

6. Ping An Health Cloud Company Limited, Beijing, China

7. Ping An International Smart City Technology Co., Beijing, China

Abstract

Background: Intensive care unit (ICU) resources are inadequate for the large population in China, so it is essential for physicians to evaluate the condition of patients at admission. In this study, our objective was to construct a machine-learning risk prediction model for mortality in respiratory intensive care units (RICUs). Methods: This study involved 817 patients who made 1,063 visits and who were admitted to the RICU from 2012 to 2017. Potential predictors such as demographic information, laboratory results, vital signs and clinical characteristics were considered. We constructed eXtreme Gradient Boosting (XGBoost) models and compared performances with random forest models, logistic regression models and clinical scores such as Acute Physiology and Chronic Health Evaluation II (APACHE II) and the sequential organ failure assessment (SOFA) system. The model was externally validated using data from Medical Information Mart for Intensive Care (MIMIC-III) database. A web-based calculator was developed for practical use. Results: Among the 1,063 visits, the RICU mortality rate was 13.5%. The XGBoost model achieved the best performance with the area under the receiver operating characteristics curve (AUROC) of 0.860 (95% confidence interval (CI): 0.808 - 0.909) in the test set, which was significantly greater than APACHE II (0.749, 95% CI: 0.674 - 0.820; P = 0.015) and SOFA (0.751, 95% CI: 0.669 - 0.818; P = 0.018). The Hosmer-Lemeshow test indicated a good calibration of our predictive model in the test set with a P-value of 0.176. In the external validation dataset, the AUROC of XGBoost model was 0.779 (95% CI: 0.714 - 0.813). The final model contained variables that were previously known to be associated with mortality, but it also included some features absent from the clinical scores. The mean N-terminal pro-B-type natriuretic peptide (NTproBNP) of survivors was significantly lower than that of the non-survival group (2066.43 pg/mL vs. 8232.81 pg/mL; P < 0.001). Conclusions: Our results showed that the XGBoost model could be a suitable model for predicting RICU mortality with easy-to-collect variables at admission and help intensivists improve clinical decision-making for RICU patients. We found that higher NT-proBNP can be a good indicator of poor prognosis.

Funder

China National Key Research Program

Key Projects of Military Logistics Scientific Research Program

China National Geriatric Clinical Center Program

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3