Restoration of Intestinal Mucosa in Euphorbia kansui-treated Severe Acute Pancreatitis Rats based on HMGB1/MFG-E8 Expression

Author:

Qiu Chengjiang1ORCID,Liu Kairui1ORCID,Li Xuguang1ORCID,Chen Weirun1,Zhang Sheng1ORCID,Huang Youxing1ORCID

Affiliation:

1. Department of Abdominal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China

Abstract

Background: The pathogenesis of Severe Acute Pancreatitis (SAP) is mediated substantially by dysfunctions in the intestinal barrier. Euphorbia kansui (EK) is a medicinal plant used widely in traditional Chinese medicine to treat inflammation; however, its efficacy and mechanism of action in SAP treatment are not yet well understood. Objective: To investigate the role of EK in intestinal barrier tissue repair and in the pathogenesis and development of SAP. Methods: The rat SAP model was established by a retrograde injection of sodium taurocholate into the pancreatic bile duct. The SAP model group and the SAP + EK treatment groups were divided into 6 subgroups according to timing: 2, 6, 12, 24, 48, or 72h after inducing SAP. The progression of the SAP rats and of the rats receiving the EK treatment was evaluated using the ascites volume, serum amylase and plasma endotoxin levels, and histological grading of intestinal mucosal damage. In addition, serum inflammatory factor contents were measured using Enzyme-Linked Immunosorbent Assay (ELISA) tests and apoptotic cells in damaged ileum tissue were detected using TUNEL staining. Apoptosis markers and other signaling proteins in intestinal mucosal cells were detected by immunohistochemical assays and then validated by combining these data with quantitative polymerase chain reactions and western blotting. Results: Compared with the results of the SAP model rats, the results of the rats that received EK treatment demonstrated that EK could effectively reduce the ascites volume and serum amylase and plasma endotoxin levels. EK treatment also greatly reduced the abnormal intestinal morphological alterations in the rat SAP model and significantly downregulated the serum contents of Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. EK treatment inhibited the elevation of capapse-3, inhibited the decrease of the Bcl-2 protein, and decreased the number of apoptotic cells in rat ileum tissue. Finally, EK treatment abrogated the increase of HMGB1 and the suppression of MFG-E8 protein expression in the SAP + EK rat ileum tissue. Conclusion: EK suppresses SAP pathogenesis by restoring the intestinal barrier function and modulating the HMGB1/MFG-E8 signaling axis.

Funder

Science and Technology Planning Project of Guangdong Province

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3