A Study on Ecotoxicological Effects of Nano-copper Oxide Particles to Portunus trituberculatus

Author:

Li Tiejun1,Hu Hongmei2,Yang Chenghu2,Zhang Bo2,Ma Limin1

Affiliation:

1. College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China

2. The Key Laboratory of Sustainable Utilization Technology Research of Marine Fishery Resources, Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang, 316021, China

Abstract

Background: As an important nano-material, nano-copper oxide particles (CuO-ENPs) harbor a vast range of characteristics, including an electronic correlation effect, thermal stability, catalytic activity, sterilization, and other properties. At present, the mechanism of ecotoxicological effects of CuO-ENPs is unclear and has been inconclusive. Therefore, we aimed to explore the ecotoxicological effects of nano-copper oxide particles (CuO-ENPs) on Portunus trituberculatus. Objective: The crabs were exposed to seawater containing different concentrations of CuO-ENPs to conduct the acute toxicity test and chronic accumulation test. Methods: Acute toxicity, metal accumulation, and SOD activity in different tissues were determined. Results: We found that the lethal concentration of 50% 96 h LC50 of CuO-ENPs to Portunus trituberculatus belonged to low toxicity. The accumulation of CuO-ENPs in different tissues from high to low was: gill > haemolymph > muscle > hepatopancreas > heart and stomach, and decreased gradually with time after reaching the maximum. Discussion: Subsequently, it was in a relatively steady state after a certain period and showed an obvious concentration effect. With the increment of exposure time and concentration of CuO-ENPs, the SOD activities in different tissues were quite different. In conclusion, the 96 h LC50 of CuOENPs to Portunus trituberculatus was 49 mg/L, and its toxicity belonged to low toxicity. Conclusion: With the increment of exposure time and concentration of CuO-ENPs, the SOD activities in different tissues were quite different, which were increased remarkably in gill and hepatopancreas, but were suppressed at an early stage of exposure in muscle and haemolymph.

Funder

National Key R&D Program of China

Natural Science Foundation of China

Zhejiang Natural Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3