miR-199b-5p-AKAP1-DRP1 Pathway Plays a Key Role in ox-LDL-induced Mitochondrial Fission and Endothelial Apoptosis

Author:

Li Yongjun1,Cui Xiaolei2,Tian Yingping2,Zhao Yapei3,Gao Hengbo2,Yao Dongqi2,Liu Liang2

Affiliation:

1. Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China

2. Emergency Department of the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China

3. Ultrasound Department of the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China

Abstract

Background: Atherosclerosis (AS) remains prevalent despite hyperlipidemia-lowering therapies. Although multiple functions of miR-199b-5p have been implicated in cancers, its role in endothelial apoptosis and AS remains unclear. This study aimed to examine the role of miR-199b-5p in mitochondrial dynamics and endothelial apoptosis. Methods: Human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) were subjected to other treatments, followed by a series analysis. We found that ox-LDL-treated HUVECs were associated with miR-199b-5p downregulation, increased reactive oxygen species level, reduced adenosine triphosphate (ATP) production, mitochondrial fission, and apoptosis, whereas enhanced miR-199b-5p expression or applied mitochondrial division inhibitor 1 (Mdivi-1) markedly reversed these changes. Results: Mechanistically, A-kinase anchoring protein 1 (AKAP1) was confirmed as a downstream target of miR-199b-5p by dual-luciferase activity reporter assay. AKAP1 overexpression reversed the anti-apoptotic effects of miR-199b-5p through the enhanced interaction of AKAP1 and dynamin protein 1 (DRP1) in ox-LDL–treated HUVECs. Moreover, miR-199b-5p downregulation, AKAP1 upregulation, and excessive mitochondrial fission were verified in human coronary AS endothelial tissues. Conclusion: The miR-199b-5p-dependent regulation of AKAP1/DRP1 is required to inhibit hyperlipidemia- induced mitochondrial fission and endothelial injury and may be a promising therapeutic target for AS.

Funder

Hebei Province Science and Technology Support Plan Project

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3