Nanoengineered Therapeutic Scaffolds for Burn Wound Management

Author:

Abid Sharjeel1,Ziauddin 1,Hussain Tanveer1,Nazir Ahsan1,Mahmood Urwa1,Hameed Misbah2,Ramakrishna Seeram3

Affiliation:

1. Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Karachi, Pakistan

2. Department of Pharmaceutics, Faculty of Pharmaceutical Science, Government College University, Faisalabad, Pakistan

3. Center for Nanofibers & Nanotechnology (CNN), National University of Singapore (NUS), Singapore

Abstract

Background: Wound healing is a complex process, and selecting an appropriate treatment is crucial and varies from one wound to another. Among injuries, burn wounds are more challenging to treat. Different dressings and scaffolds come into play when skin is injured. These scaffolds provide the optimum environment for wound healing. With the advancements in nanoengineering, scaffolds have been engineered to improve wound healing with lower fatality rates. Objectives: Nanoengineered systems have emerged as one of the most promising candidates for burn wound management. This review paper aims to provide an in-depth understanding of burn wounds and the role of nanoengineering in burn wound management. The advantages of nanoengineered scaffolds, their properties, and their proven effectiveness have been discussed. Nanoparticles and nanofibers-based nanoengineered therapeutic scaffolds provide optimum protection, infection management, and accelerated wound healing due to their unique characteristics. These scaffolds increase cell attachment and proliferation for desired results. Results: The literature review suggested that the utilization of nanoengineered scaffolds has accelerated burn wound healing. Nanofibers provide better cell attachment and proliferation among different nanoengineered scaffolds because their 3D structure mimics the body's extracellular matrix. Conclusion: With these advanced nanoengineered scaffolds, better burn wound management is possible due to sustained drug delivery, better cell attachment, and an infection-free environment.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3