Nicotinamide Loaded Chitosan Nanocomplex Shows Improved Anticancer Potential: Molecular Docking, Synthesis, Characterization and In vitro Evaluations

Author:

Metwaly Ahmed M.1ORCID,Abu-Saied Mohamed A.2,Gobaara Ibraheem M.M.3,Lotfy Asmaa M.4,Alsfouk Bshra A.5,Elkaeed Eslam B.6,Eissa Ibrahim H.7

Affiliation:

1. Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt

2. Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City 21934, Alexandria, Egypt

3. Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt

4. Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt

5. Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

6. Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia

7. Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al- Azhar University, Cairo 11884, Egypt

Abstract

Abstract: This study aimed to prepare and characterize chitosan nanoparticles encapsulating a nicotinamide derivative (Ni-CS-NP). Additionally, the therapeutic effectiveness, cytotoxicity, selectivity, and immunomodulatory properties of Ni-CS-NP were evaluated in human breast and colon cancer cell lines. Chitosan nanoparticles have shown potential as drug delivery carriers due to their biocompatibility and controlled release properties. Encapsulating a nicotinamide derivative further enhances the therapeutic potential of these nanoparticles. Computational studies were employed to validate the binding interactions, providing crucial insights into the formulation's stability and effectiveness. The primary objective was to assess the cytotoxicity and safety profiles of Ni-CS-NP in human cancer cell lines. Moreover, this study aimed to investigate the specific mechanisms underlying its cytotoxic effects, including its impact on cell cycle progression, apoptosis induction, and immunomodulation. Ni-CS-NP were synthesized using the ionic gelation method and characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermo gravimetric analysis. The cytotoxicity was evaluated in breast and colon cancer cell lines through the MTT assay. Selectivity indices were calculated to determine the safety profiles. The inhibition of VEGFR-2, induction of apoptosis, cell cycle disruption, and immunomodulatory effects were assessed through molecular assays. Computational analysis demonstrated favorable binding interactions through the Ni-CS-NP complex. The characterization studies confirmed the successful synthesis of Ni-CS-NP with well-defined structural and thermal properties. Ni-CS-NP exhibited remarkable cytotoxicity with a superior safety profile against MCF7 and HCT 116 cell lines showing IC50 values of 2.32 and 2.70 μM, respectively, surpassing sorafenib's efficacy (IC50 = 4.12 and 7.55 μM, respectively). Additionally, Ni-CS-NP effectively inhibited VEGFR-2, induced both early and late apoptosis, and disrupted the cell cycle progression in MCF7 cells. Notably, Ni-CS-NP demonstrated significant immunomodulatory effects by reducing TNF-α and IL-2 levels compared to dexamethasone. The encapsulation of a nicotinamide derivative within chitosan nanoparticles (Ni-CS-NP) through the ionic gelation method proved successful. Ni-CS-NP displayed potent cytotoxicity, superior safety profiles, and promising immunomodulatory effects in human breast cancer cells. These findings highlight the potential of Ni-CS-NP as a novel therapeutic agent for breast cancer treatment, warranting further investigation for clinical applications.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3