Alternative Reactions to Friedel-crafts Acylation on Highly Activated Substrates

Author:

Leite Debora Inacio1ORCID,Pimentel Luiz Claudio Ferreira1ORCID,Avelino Dias Maria da Conceição2ORCID,Bastos Monica Macedo1ORCID,Boechat Nubia12ORCID

Affiliation:

1. Fundação Oswaldo Cruz, Laboratório de Síntese de Fármacos - LASFAR, Instituto de Tecnologia em Fármacos, Farmanguinhos- Fiocruz, Manguinhos, 21041-250, Rio de Janeiro, Brasil

2. Programa de Pós-Graduação Acadêmica em Pesquisa Translacional em Fármacos e Medicamentos, Farmanguinhos, Fiocruz, 21041-250, Rio de Janeiro, Brasil

Abstract

Abstract: Friedel-crafts acylation (FCAcyl) is the most widespread method used to prepare aryl ketones and aldehydes. However, depending on the type of group attached to the benzene, their derivatives influence the electronic characteristics and structural orientations of the compounds during acylation; thus, the groups are very important for the success of the reaction. The existence of strong electron-donating groups, such as polyhydroxy/ polyalkoxyphenols and anilines on the aromatic ring, makes this reaction difficult. To overcome these problems and with the aim of obtaining aromatic ketones from benzene compounds, appropriate methodologies were described. Therefore, this review consists of showing the importance and applicability of the Houben-Hoesch and Sugasawa reactions as alternatives for the Friedel-crafts acylation of polyhydroxy/polyalkoxyphenols and anilines, respectively. The main advances used in the original methodologies were also described. The use of these reactions as an alternative to the renowned Friedel-crafts acylation reactions should be taken into consideration as an important synthetic tool because there is the possibility of reducing steps, with consequent improvement of yield, in addition to optimizing reaction performance.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Insights in Organic Chemistry (Part 1);Current Organic Chemistry;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3